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The recent advances in the machine learning techniques
have led autonomous decision making systems be adopted in
wide range of domains to perform data-driven decision mak-
ing. As such the domains range from movie recommenda-
tions, ad predictions to legal, medical, and judicial. The di-
versity of domains mandate different criteria for the machine
learning techniques. For domains such as movie recommen-
dations and ad predictions, accuracy is usually the primary
objective but for safety critical domains (Otte 2013) such
as medical and legal, interpretability, privacy, and fairness
(Barocas, Hardt, and Narayanan 2017) are of paramount im-
portance.

It has been long observed that the interpretable techniques
are typically trusted and adopted by decision makers as in-
terpretability provides them understanding of reasoning be-
hind a tool’s decision making (Ribeiro, Singh, and Guestrin
2016). At this point, it is important to acknowledge that for-
malizing interpretability is a major challenge (Doshi-Velez
and Kim 2017) and we do not claim to have final word on
this. In this context, it is worth noting that for several do-
mains such as medical domain, which was the motivation
for our investigation, decision rules with small number of
rules tend to be most interpretable (Letham et al. 2015).

Since the problem of rule learning is known to be in NP-
hard, the earliest efforts focused on heuristic approaches that
sought to combine heuristically chosen optimization func-
tions with greedy algorithmic techniques. Recently, there
has been surge of effort to achieve balance between accu-
racy and rule size via principled objective functions and us-
age of combinatorial optimization techniques such as linear
programming (LP) relaxations, sub-modular optimization,
or Bayesian methods (Bertsimas, Chang, and Rudin 2012;
Marchand and Shawe-Taylor 2002; Malioutov and Varsh-
ney 2013; Wang et al. 2015). Motivated by the success
of MaxSAT solving over the past decade, Malioutov and
Meel proposed a MaxSAT-based approach, called MLIC
(Maliotov and Meel 2018), that provides a precise con-
trol of accuracy vs. interpretability. The said approach was
shown to provide interpretable Boolean formulas without
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significant loss of accuracy compared to the state of the art
classifiers. MLIC, however, has poor scalability in terms of
training time and times out for most instances beyond hun-
dreds of samples. In this context, we ask: Can we design
a MaxSAT-based framework to efficiently construct inter-
pretable rules without loss of accuracy and scaling to large
real-world instances?

The primary contribution of this paper is an affirmative
answer to the above question. We first investigate the rea-
son for poor scalability of MLIC and attribute it to large size
(i.e., number of clauses) of MaxSAT queries constructed by
MLIC. In particular, for training data of n samples over m
boolean features, MLIC constructs a formula of size O(n ·
m · k) to construct a k−clause Boolean formula. We empir-
ically observe that the performance of MaxSAT solvers has
worse than quadratic degradation in runtime with increase in
the size of query. This leads us to propose a novel incremen-
tal framework, called IMLI, for learning interpretable rules
using MaxSAT. In contrast to MLIC, IMLI makes p queries
to MaxSAT solvers with each query of the sizeO(np ·m ·k).
IMLI relies on first splitting the data into p batches and then
incrementally learning rules on the p batches in a linear or-
der such that rule learned for the i-th batch not only uses the
current batch but regularizes itself with respect to the rules
learned from the first i− 1 batches.

We now discuss briefly about formal logic theory and
MaxSAT. A CNF (Conjunctive Normal Form) formula on
a set of Boolean variables is a conjunction of clauses where
each clause is a disjunction of literals. Here a literal is either
a variable or its complement. Given a CNF formula, the SAT
(satisfiability) problem finds an assignment to the variables
that satisfies all the clauses in the formula, wherein a clause
is satisfied when at least one literal in that clause is satisfied.
MaxSAT is an optimization analogue to SAT, where the goal
is to find an assignment that satisfies most of the clauses in
the formula. In this problem, we consider a weighted vari-
ant of a CNF formula where each clause is given a positive
weight. Based on the weight, there are two types of clauses
in a formula: a hard clause, where the weight is∞ and a soft
clause, where the weight R+. To learn rules incrementally
over batches of the dataset, we consider a partial weighted
MaxSAT formula, where the goal is to find an optimal as-



signment that satisfies all the hard clauses and most of the
soft clauses such that the total weight of the satisfied soft
clauses is maximized.

In this paper, we reduce the learning problem as an opti-
mization problem, where we optimize both the interpretabil-
ity and the prediction accuracy of a rule. We consider a
standard binary classification problem on a dataset with bi-
nary features. Features with categorical and real-valued fea-
tures can be converted to binary features by applying stan-
dard discretization techniques as in (Maliotov and Meel
2018). Let 1{true} = 1 and 1{false} = 0. To learn
a k-clause CNF rule from the dataset, we consider two
types of boolean decision variables: feature variable bji =
1{j-th feature is selected in i-th clause} and noise variable
ηq = 1{sample q is misclassified}. In our proposed in-
cremental approach, we first split the original dataset into
fixed number p of batches. Given a training set (X ∈
{0, 1}n×m,y ∈ {0, 1}n) in the τ -th batch, we consider the
following optimization function.

min
∑
i,j

bji · I(b
j
i ) + λ

∑
q

ηq

where indicator function I(·) is defined as follows.

I(bji ) =

{
−1 if bji = 1 in the (τ − 1)-th batch (τ 6= 1)

1 otherwise

The first term in the objective function tries to keep the
assignment of all feature variables in the previous batch ex-
cept in the first batch, where the preference is given on the
sparsity (i.e., interpretability) of the rule. The second term
in the objective function emphases on minimizing the pre-
diction error. λ is the data fidelity parameter balancing the
trade-off between the sparsity and the prediction accuracy
of the learned rule. Higher value of λ guarantees less pre-
diction error while sacrificing the sparsity of R by adding
more literals inR, and vice versa.

We now discuss how to construct the MaxSAT formula
for learning rule in a batch. We construct soft clauses to en-
code the objective function and hard clauses to encode the
constraints for all samples, that is, a positive labeled sample
must satisfy the learned rule and a negative labeled sample
must dissatisfy the rule, otherwise the sample is detected as a
classification noise. The weight of the soft clause is derived
from the coefficients in the objective function. The clauses
in the MaxSAT formula are defined as follows:

Si
j :=

{
bji if bji = 1 in the (τ − 1)-th batch(τ 6= 1)

¬bji otherwise
,

wt(Si
j) = 1;

Eq := ¬ηq, wt(Si
j) = λ;

Hq := ¬ηq →
(
yq ↔

k∧
i=1

Xq ◦ bi

)
, wt(Hq) =∞.

In the hard clause Hq , Xq is the q-th row of input ma-
trix X, yq is the q-th element of y, and bi = {bji | j ∈

{1, . . . ,m}}. Between two vectors u and v over boolean
variables or constants (i.e., 0, 1), we refer u ◦ v to represent
the inner product of u and v, i.e., u◦v =

∨
i ui∧vi , where

ui and vi denote a variable/constant at the i-th index of u
and v respectively.

Once we construct all soft and hard clauses, the MaxSAT
query Q is the conjunction of all clauses.

Q :=

n∧
q=1

Eq ∧
i=k,j=m∧
i=1,j=1

Si
j ∧

n∧
q=1

Hq

Our learned rule consists of features that are assigned 1
in the optimal solution of Q by an off-the-shelf MaxSAT
solver.

We conduct a comprehensive experimental study over a
large set of benchmarks and show that IMLI significantly im-
proves upon the runtime performance of MLIC by achieving
a speedup of up to three orders of magnitude. Furthermore,
the rules learned by IMLI are significantly small and easy to
interpret compared to that of the state-of-the-art classifiers
such as RIPPER and MLIC. We think IMLI highlights the
promise of MaxSAT-based approach and opens up several
interesting research directions at the intersection of AI and
SAT/SMT community. In particular, it would be an interest-
ing direction of future research if the MaxSAT solvers can
be designed to take advantage of incrementality of IMLI.
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