The Flexible Socio Spatial Group Queries

Bishwamittra Ghosh1, Mohammed Eunus Ali2, Farhana M. Choudhury3, Sajid Hasan Apon2, Timos Sellis4, Jianxin Li5

VLDB 2019

1National University of Singapore
2Bangladesh University of Engineering and Technology
3RMIT University and University of Melbourne, Australia
4Swinburne University of Technology, Australia
5The University of Western Australia
Socio-spatial Graph

The Flexible Socio Spatial Group Queries

VLDB 2019
Problem Formulation

Given
- Set of meeting points Q
- Socio-spatial graph $G = (V, E)$

Find top k groups such that

$$\text{score}(G_i, q_i) \geq \text{score}(G_{i+1}, q_{i+1})$$

where G_i is a subgraph of G, $q_i \in Q$ and $1 \leq i \leq k - 1$
Constraints for a feasible group $G_i = (V, E)$

- minimum social connectivity constraint c
 - $\text{degree}(v) \geq c, \forall v \in V$

- maximum distance d_{max}
 - $\text{dist}(v, q) \leq d_{\text{max}}, \forall v \in V$

- minimum group size n_{min}, maximum group size n_{max}
 - $n_{\text{min}} \leq |V| \leq n_{\text{max}}$
Score of group $G_i = (V, E)$ w.r.t. meeting point q

$$\text{score}_{\text{social}} = \frac{2|E|}{|V|(|V| - 1)}$$

$$\text{score}_{\text{spatial}} = 1 - \frac{\sum_{v \in V} \text{dist}(v, q)}{d_{\text{max}}|V|}$$

$$\text{score}_{\text{size}} = \frac{|V|}{n_{\text{max}}}$$

$$\text{score} = \alpha \cdot \text{score}_{\text{social}} + \beta \cdot \text{score}_{\text{spatial}} + \gamma \cdot \text{score}_{\text{size}}$$
Literature review

There are existing works that address socio spatial group queries. The major gaps are

- specific group size vs variable group size
- finding only the best group vs top \(k \) groups
- fixed meeting point vs multiple meeting points
- average social connectivity constraint vs minimum social connectivity constraint
- ranking function combining social and spatial factors vs ranking function combining social, spatial and group size factors

6 [Fang17], [Shen16], [Zhu14], [Yang12]
7 [Shen16]
8 [Shen16], [Yang12]
9 [Fang17], [Zhu14]
10 [Armenatzoglou15]
Contribution

- Exact algorithm
 - member ordering based on spatial distance
 - optimistic assumption (maximum) on social connectivity of including members
 - early termination based on upper bound on spatial distance
Heuristic approximate approach
 - member ordering based on spatial distance
 - lower bound on social connectivity while including a member in the intermediate group
Continued...

- A fast approximate approach
 - a tighter lower bound on social connectivity while including a member in the intermediate group
 - upper bound on spatial distance and lower bound on social connectivity that improves the rank of current exploring group
 - prune when including a member cannot increase the score of the intermediate group

- Greedy approach
 - avoid backtracking
Simulation

- meeting point q_1
- distance ordered members
 $\{a, b, c, d \ldots \}$
 \emptyset

- meeting point q_2
- distance ordered members
 $\{b, a, c, \ldots \}$
 \emptyset
Simulation

- Meeting point q_1
- Distance ordered members $\{a, b, c, d \ldots\}$

- Meeting point q_2
- Distance ordered members $\{b, a, c, \ldots\}$
Simulation

- meeting point \(q_1 \)
- distance ordered members \(\{a, b, c, d \ldots \} \)

- meeting point \(q_2 \)
- distance ordered members \(\{b, a, c, \ldots \} \)
Simulation

- meeting point q_1
- distance ordered members
 \{a, b, c, d \ldots\}

- meeting point q_2
- distance ordered members
 \{b, a, c, \ldots\}
Simulation

- meeting point q_1
- distance ordered members
 \{a, b, c, d \ldots \}

- meeting point q_2
- distance ordered members
 \{b, a, c, \ldots \}

select meeting point that has minimum spatial distance to first unexplored member
Simulation

- meeting point q_1
- distance ordered members \(\{a, b, c, d \ldots \} \)

- meeting point q_2
- distance ordered members \(\{b, a, c, \ldots \} \)

\{a, b, c\} is a result group
Simulation

- meeting point \(q_1 \)
- distance ordered members \(\{a, b, c, d \ldots \} \)

- meeting point \(q_2 \)
- distance ordered members \(\{b, a, c, \ldots \} \)
Simulation

- meeting point q_1
- distance ordered members \{a, b, c, d \ldots \}

- meeting point q_2
- distance ordered members \{b, a, c, \ldots \}

Advance termination based on upper bound on spatial distance
Simulation

- meeting point q_1
- distance ordered members
 $\{a, b, c, d \ldots\}$

- meeting point q_2
- distance ordered members
 $\{b, a, c, \ldots\}$
Simulation

- meeting point q_1
- distance ordered members
 $\{a, b, c, d \ldots \}$

- meeting point q_2
- distance ordered members
 $\{b, a, c, \ldots \}$

$\deg(c, \{a\}) < \text{lower bound on social connectivity}$
Simulation

- meeting point q_1
- distance ordered members
 \{a, b, c, d \ldots \}

- meeting point q_2
- distance ordered members
 \{b, a, c, \ldots \}

\[
\text{degree}(c, \{b\}) \geq \text{lower bound on social connectivity}
\]
Meeting point q_1
- Distance ordered members
\{a, b, c, d \ldots \}

Meeting point q_2
- Distance ordered members
\{b, a, c, \ldots \}
Approximation ratio of fast approximate algorithm

$$\text{approximation ratio} = \frac{\text{lowest scoring retrieved group}}{\text{best scoring group that may not be retrieved}}$$

<table>
<thead>
<tr>
<th>Emphasis</th>
<th>Weights</th>
<th>Approximation ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social score</td>
<td>$\alpha = 1$, $\beta = \gamma = 0$</td>
<td>$\frac{c}{n_{max} - 1}$</td>
</tr>
<tr>
<td>Spatial score</td>
<td>$\beta = 1$, $\alpha = \gamma = 0$</td>
<td>1</td>
</tr>
<tr>
<td>Size score</td>
<td>$\gamma = 1$, $\alpha = \gamma = 0$</td>
<td>$\frac{n_{min}}{n_{max}}$</td>
</tr>
</tbody>
</table>
Experimental Results

B = Baseline\(^\text{11}\), E = Exact, A = Approximate, FA = Fast approximate, GA = Greedy approximate

Figure: Computation time of different algorithm
Experimental Results

A = Approximate, FA = Fast approximate, GA = Greedy approximate

Figure: Percentage of groups in top k of approximate algorithm that also appear in top k, top $1.5k$, and top $2k$ of the exact algorithm
Conclusion

▶ we propose novel top k flexible social spatial group queries
▶ we devise a ranking function combining social closeness, spatial distance, and group size
▶ we propose exact algorithm and efficient approximate algorithms
▶ Exact algorithm runs up to $10 \times$ faster than the baseline
▶ Fast approximate algorithm runs up to $100 \times$ faster than exact algorithm and returns the same set of results in most cases

Thank You