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Paper Source Code

Dataset Size Features NN SVC RIPPER MLIC IMLI 

PIMA 768 134 77.92 %  
0.32 s

75.32 %  
0.37 s 

75.32 %  
2.58 s 

75.97 %  
Timeout 

73.38 %   
0.74 s 

Credit-
default 30000 334 79.61 %   

872.97 s 
80.69 %   
847.93 s 

80.97 %   
20.37 s 

80.72 %   
Timeout 

79.41 %   
32.58 s 

Twitter 49999 1050 Timeout Timeout 95.56 %   
98.21 s 

94.78 %   
Timeout 

94.69 %   
59.67 s

Dataset RIPPER MLIC IMLI 
Parkinsons 2.6 2 8 
Ionosphere 9.6 13 5 
WDBC 7.6 14.5 2 
Blood 1 3 3.5 
Adult 107.55 44.5 28 
PIMA 8.25 16 3.5 
Tom’s HW 30.33 2 2.5 
Twitter 21.6 20.5 6 
Credit 14.25 6 3 

Interpretable Rules

• Credit-default Dataset
A client will default if  
Education type = other OR
repayment status in September: payment delay > 1 month OR 
repayment status in August: payment delay > 2 months OR 
repayment status  in June: payment delay > 2 months

• Pima Indians Diabetes Dataset 
A person is tested positive for diabetes if 
Plasma glucose concentration > 125 AND 
Triceps skin fold thickness ≤ 35 mm AND 
Diabetes pedigree function > 0.259 AND 
Age > 25 years

• Each cell in last 5 columns: test accuracy (%) and training time (s)
• IMLI exhibits better training time by costing a little bit of accuracy

• CNF(1) denotes the result for CNF rule with 1 clause
• Rule size decreases as the number of partitions (!) increases

• Each cell denotes the average length of the generated rule
• IMLI generates shorter rules compared to other models

Conclusion

• IMLI achieves up to three orders of magnitude improvement in
training time

• The generated rules appear to be reasonable, intuitive, and more
interpretable

Interpretable Machine Learning

• The wide adoption of machine learning in the critical domains has
propelled the need for interpretable techniques

• Interpretable machine learning model provides end users the
reasoning behind decision making

• We propose an incremental approach to MaxSAT based
interpretable rule learning framework

Existing Approach

• Reduces the learning problem as a MaxSAT query
• Generates interpretable rules expressed in CNF
• To generate a # clause CNF rule for a dataset of $ samples over %

boolean features, the number of clause of MaxSAT query is &($ ∗
% ∗ #)

Proposed  Approach

• We attribute large formula size of the MaxSAT query for the poor
scalability of the existing approach

• We propose a partition-based incremental learning framework

Solution Technique

• Divide the training data into a fixed number of partitions
• The MaxSAT query constructed for partition ) is based on the

training data for partition ) and the rule learned until partition ) − 1
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Key Contribution

• IMLI makes ! queries to MaxSAT solvers with each query of the size 
& 0

1 ∗ % ∗ #

https://bishwamittra.github.io
https://www.comp.nus.edu.sg/~meel/

https://bishwamittra.github.io/
https://www.comp.nus.edu.sg/~meel/

