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Applications of Machine Learning
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Example Dataset
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Representation of an interpretable model and a black box
model

A sample is Iris Versicolor if
(sepal length > 6.3 OR sepal width > 3
OR petal width ≤ 1.5 )
AND
(sepal width ≤ 2.7 OR petal length > 4
OR petal width > 1.2)
AND
(petal length ≤ 5)

Interpretable Model Black Box Model

4



Formula

I A CNF (Conjunctive Normal Form) formula is a conjunction
of clauses where each clause is a disjunction of literals

I A DNF (Disjunctive Normal Form) formula is a disjunction of
clauses where each clause is a conjunction of literals

I Example
I CNF: (a ∨ b ∨ c) ∧ (d ∨ e)
I DNF: (a ∧ b ∧ c) ∨ (d ∧ e)

I Decision rules in CNF and DNF are highly interpretable
[Malioutov’18; Lakkaraju’19]
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Expectation from a ML model

I Model needs to be interpretable

I End users should understand the reasoning behind
decision-making

I Examples of interpretable models:
I Decision tree
I Decision rules (If-Else rules)
I ...
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Definition of Interpretability in Rule-based Classification

I There exists different notions of interpretability of rules

I Rules with fewer terms are considered interpretable in medical
domains [Letham’15]

I We consider rule size as a proxy of interpretability for
rule-based classifiers

I Rule size = number of literals
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Motivation

I Recently a MaxSAT-based interpretable rule learning
framework MLIC has been [Malioutov’18 ]

I MLIC learns interpretable rules expressed as CNF

I The number of clauses in the query is linear with the number
of samples in the dataset

I Suffers from poor scalability for large datasets
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Can we design?

A sound framework-

I takes benefit of success of MaxSAT solving

I scales to large dataset

I provides interpretability

I achieves competitive prediction accuracy
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IMLI: Incremental approach to MaxSAT-based Learning of
Interpretable Rules

I p is the number of partition

I n is the number of samples

I The number of clauses in MaxSAT query is O(np )
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Continued. . .

I consider binary variables bi for feature i

I bi = 1{feature i is selected in R}
I Consider assignment b1 = 1, b2 = 0, b3 = 0, b4 = 1

R = (1st feature OR 4th feature)
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Continued. . .

In MaxSAT

I Hard Clause: always satisfied, weight = ∞
I Soft Clause: can be falsified, weight = R+

MaxSAT finds an assignment that satisfies all hard clauses and
most soft clauses such that the weight of satisfied soft clauses is
maximize
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Continued. . .

(i − 1)-th partition
we learn assignment

I b1 = 0

I b2 = 1

I b3 = 0

I b4 = 1

i -th partition
we construct soft unit clause

I ¬b1
I b2
I ¬b3
I b4
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Experimental Results

15



Accuracy and training time of different classifiers

Dataset Size Features RF SVC RIPPER MLIC IMLI

PIMA 768 134
76.62 75.32 75.32 75.97 73.38

(1.99) (0.37) (2.58) Timeout (0.74)

Tom’s HW 28179 844
97.11 96.83 96.75 96.61 96.86

(27.11) (354.15) (37.81) Timeout (23.67)

Adult 32561 262
84.31 84.39 83.72 79.72 80.84

(36.64) (918.26) (37.66) Timeout (25.07)

Credit-default 30000 334
80.87 80.69 80.97 80.72 79.41

(37.72) (847.93) (20.37) Timeout (32.58)

Twitter 49999 1050
95.16

Timeout
95.56 94.78 94.69

(67.83) (98.21) Timeout (59.67)

Table: For every cell in the last seven columns the top value represents
the test accuracy (%) on unseen data and the bottom value surrounded
by parenthesis represents the average training time (seconds).

16



Size of interpretable rules of different classifiers

Dataset RIPPER MLIC IMLI

Parkinsons 2.6 2 8

Ionosphere 9.6 13 5
WDBC 7.6 14.5 2
Adult 107.55 44.5 28
PIMA 8.25 16 3.5
Tom’s HW 30.33 2 2.5

Twitter 21.6 20.5 6
Credit 14.25 6 3

Table: Size of the rule of interpretable classifiers.
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Rule for WDBC Dataset

Tumor is diagnosed as malignant if
standard area of tumor > 38.43 OR
largest perimeter of tumor > 115.9 OR
largest number of concave points of tumor > 0.1508
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Conclusion

I We propose IMLI: an incremental approach to MaxSAT-based
framework for learning interpretable classification rules

I IMLI achieves up to three orders of magnitude runtime
improvement without loss of accuracy and interpretability

I The generated rules appear to be reasonable, intuitive, and
more interpretable
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Thank You !!
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MaxSAT

I MaxSAT is an optimization problem of general SAT problem

I Try to maximize the number of satisfied clauses in the formula

I A variant of general MaxSAT is weighted partial MaxSAT
I Maximize the weight of satisfied clauses
I Consider two types of clause

1. Hard clause: weight is infinity, hence always satisfied
2. Soft clause: priority is set based on positive real valued weight

I Cost of the solution is the total weight of unsatisfied clauses
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Example of MaxSAT

1 : x

2 : y

3 : z

∞ : ¬x ∨ ¬y
∞ : x ∨ ¬z
∞ : y ∨ ¬z

1 : x

2 : y

3 : z

∞ : ¬x ∨ ¬y
∞ : x ∨ ¬z
∞ : y ∨ ¬z

Optimal Assignment : ¬x , y ,¬z
Cost of the solution is 1 + 3 = 4

22



Example of MaxSAT

1 : x

2 : y

3 : z

∞ : ¬x ∨ ¬y
∞ : x ∨ ¬z
∞ : y ∨ ¬z

1 : x

2 : y

3 : z

∞ : ¬x ∨ ¬y
∞ : x ∨ ¬z
∞ : y ∨ ¬z

Optimal Assignment : ¬x , y ,¬z
Cost of the solution is 1 + 3 = 4

22



Example of MaxSAT

1 : x

2 : y

3 : z

∞ : ¬x ∨ ¬y
∞ : x ∨ ¬z
∞ : y ∨ ¬z

1 : x

2 : y

3 : z

∞ : ¬x ∨ ¬y
∞ : x ∨ ¬z
∞ : y ∨ ¬z

Optimal Assignment : ¬x , y ,¬z
Cost of the solution is 1 + 3 = 4

22



Solution Outline

I Reduce the learning problem as an optimization problem

I Define the objective function

I Define decision variables

I Define constraints

I Choose a proper solver to find the assignment of the decision
variables

I Construct the rule
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Input Specification

I Discrete optimization problem requires dataset to be in binary

I Categorical and real-valued datasets can be converted to
binary by applying standard techniques, e.g., one hot encoding
and comparison of feature value with predefined threshold.

I Input instance {X, y} where X ∈ {0, 1}n×m, and y ∈ {0, 1}n

I x = {x1, . . . , xm} is the boolean feature vector

I Learn a k-clause CNF rule
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Objective Function

I Let |R| = number of literals in the rule

I ER = set of samples which are misclassified by R
I λ be data fidelity parameter

I We find a classifier R as follows:

min
R
|R|+ λ|ER| such that ∀Xi /∈ ER, yi = R(Xi )

I |R| defines interpretability or sparsity

I |ER| defines classification error
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Decision Variables

Two types of decision variables-

1. Feature variable blj
I Feature xj can participate in each of the l-th clause of CNF

rule R
I If blj is assigned true, feature xj is present in the l-th clause of
R

I Let R = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4)
I For feature x1, decision variable b1

1 and b2
1 are assigned true

2. Noise variable (classification error) ηq
I If ηq is assigned true, the q-th sample is misclassified by R
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MaxSAT Constraints Qi

I MaxSAT constraint is a CNF formula where each clause has a
weight

I Qi is the MaxSAT constraints for the i-th partition.

I Qi consists of three set of clauses.
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1. Soft Clause for Feature Variable

I IMLI tries to falsify each feature variable blj for sparsity

I If a feature variable is assigned true in Ri−1, IMLI keeps
previous assignment

V l
j :=

{
blj if xj ∈ clause(Ri−1, l)

¬blj otherwise
; W (V l

j ) = 1
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Example

Xi =

[
0 1 1
1 0 1

]
; yi =

[
1
0

]
I #samples n = 2, #features m = 3

I We learn a 2-clause rule, i.e. k = 2

Let

I Ri−1 = (b11 ∨ b12) ∧ (b21)

Now

V 1
1 = (b11); V 1

2 = (b12); V 1
3 = (¬b13);

V 2
1 = (b21); V 2

2 = (¬b22); V 2
3 = (¬b23);
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2. Soft Clause for Noise Variable

I IMLI tries to falsify as many noise variables as possible

I As data fidelity parameter λ is proportionate to accuracy,
IMLI puts λ weight to following soft clause

Nq := (¬ηq); W (Nq) = λ
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Example

Xi =

[
0 1 1
1 0 1

]
; yi =

[
1
0

]

N1 := (¬η1)

N2 := (¬η2)
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3. Hard Clause

I Hard clause is always true

I If a sample is predicted correctly, the class label is equal to
the prediction of the generated rule and noise variable is
assigned false

I Otherwise, the noise variable is assigned true
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3. Hard Clause

I “◦” operator returns the dot product between two vectors

I u is a vector of constant

I v is a vector of feature variable

I u◦v =
∨

i (ui ∧ vi ), where ui and vi denote a variable/constant
at the i-th index of vector u and v respectively

I Here “∧” has standard interpretation, i.e., a∧ 1 = a, a∧ 0 = 0

I Let Bl = {blj |j ∈ [1,m]} be the vector of feature variables for
the l-th clause

Dq := (¬ηq → (yq ↔
k∧

l=1

(Xq ◦ Bl))); W (Dq) =∞
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Example

Xi =

[
0 1 1
1 0 1

]
; yi =

[
1
0

]

Dq := (¬ηq → (yq ↔
k∧

l=1

(Xq ◦ Bl)));W (Dq) =∞[
0 1 1

]
◦
[
b11 b12 b13

]
= b12 ∨ b13[

0 1 1
]
◦
[
b21 b22 b23

]
= b22 ∨ b23

D1 := (¬η1 → ((b12 ∨ b13) ∧ (b21 ∨ b23))

[
1 0 1

]
◦
[
b11 b12 b13

]
= b11 ∨ b13[

1 0 1
]
◦
[
b21 b22 b23

]
= b21 ∨ b23

D2 := (¬η2 → (¬(b12 ∨ b13) ∨ ¬(b21 ∨ b23))

34



MaxSAT constraint Qi

Qi is the conjunction of all soft and hard clauses

Qi := V l
j ∧ Nq ∧ Dq
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MaxSAT Constraint Qi

1 : b11

1 : b12

1 : ¬b13
1 : b21

1 : ¬b22
1 : ¬b23
λ : ¬η1
λ : ¬η2
∞ : ¬η1 → ((b12 ∨ b13) ∧ (b22 ∨ b23))

∞ : ¬η2 → (¬(b11 ∨ b13) ∨ ¬(b21 ∨ b23))
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Construction of Rule R

R consists of features which are assigned true

Construction
Let σ∗ = MaxSAT(Qi ,W ), then xj ∈ clause(Ri , l) iff
σ∗(blj ) = true.
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Effect of #partition on rule size
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Effect of data fidelity on rule size
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Effect of #partition on training time
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Effect of #partition on training accuracy
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Effect of #partition on validation accuracy
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Effect of data fidelity on training time
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Interpretable Rule: Twitter Dataset

A topic is popular if
Number of Created Discussions at time 1 > 78 OR
Attention Level measured with number of authors at time
6 > 0.000365 OR
Attention Level measured with number of contributions at time

0 > 0.00014 OR
Attention Level measured with number of contributions at time

1 > 0.000136 OR
Number of Authors at time 0 > 147 OR
Average Discussions Length at time 3 > 205.4 OR
Average Discussions Length at time 5 > 654.0
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Interpretable Rule: Parkinson’s Disease Dataset

A person has Parkinson’s disease if
(minimum vocal fundamental frequency ≤ 87.57 Hz OR
minimum vocal fundamental frequency > 121.38 Hz OR
Shimmer:APQ3 ≤ 0.01 OR
MDVP:APQ > 0.02 OR
D2 ≤ 1.93 OR
NHR > 0.01 OR
HNR > 26.5 OR
spread2 > 0.3)
AND
(Maximum vocal fundamental frequency ≤ 200.41 Hz OR
HNR ≤ 18.8 OR
spread2 > 0.18 OR
D2 > 2.92)
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Rule for Pima Indians Diabetes Database

Tested positive for diabetes if
Plasma glucose concentration > 125 AND
Triceps skin fold thickness ≤ 35 mm AND
Diabetes pedigree function > 0.259 AND
Age > 25 years
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Rule for Blood Transfusion Service Center Dataset

A person will donate blood if
Months since last donation ≤ 4 AND
total number of donations > 3 AND
total donated blood ≤ 750.0 c.c. AND
months since first donation ≤ 45
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Rule for WDBC Dataset

Tumor is diagnosed as malignant if
standard area of tumor > 38.43 OR
largest perimeter of tumor > 115.9 OR
largest number of concave points of tumor > 0.1508
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