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Abstract

Interpretability has become a central thread in ML
research. As ML algorithms continue to permeate
critical application domains such as medicine, le-
gal, and transportation, it becomes increasingly im-
portant to allow human domain experts to under-
stand and interact with ML solutions. ML algo-
rithms that produce predictions in the form of rules
are arguably some of the most interpretable ones,
but their discrete combinatorial structure makes
them computationally hard to learn. Here we gen-
eralize the widely popular CNF rules and introduce
relaxed-CNF rules. These rules are much more
flexible in terms of fitting data (have higher ca-
pacity) but about as interpretable to people as the
traditional ones. We consider relaxed definitions
of standard OR/AND operators which allow excep-
tions in the construction of a clause and also in the
selection of clauses in a rule. We first describe an
exact ILP solution, which is computationally ex-
pensive. We then propose an incremental solution,
which allows us to generate accurate interpretable
relaxed-CNF rules with significantly improved run-
time performance.

1 Introduction

The widespread adoption of prediction systems in various
safety-critical domains such as medical diagnosis, law, ed-
ucation, and many others has led to the increased importance
of presenting their output to people [Srikanth et al., 2015;
Kononenko, 2001; Surden, 2014; Tollenaar and Van der Hei-
jden, 2013; MoZina ef al., 2005]. To enable safe, robust
and trustworthy integration of such systems, the end users re-
quire them to support interpretability, privacy, and fairness in
decision-making [Dressel and Farid, 2018; Zeng et al., 2017,
Vellido et al., 2012; Wang et al., 2015]. In this con-
text, rule-based representations are particularly effective for
presenting decision functions to people [Lakkaraju et al.,
2019; Malioutov and Meel, 2018; Wang and Rudin, 2015;
Wang et al., 2017]. Although formalizing interpretability
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in the context of classification problems remains an open
problem [Doshi-Velez and Kim, 20171, practitioners suggest
smaller decision rules to be more interpretable, specifically
in the medical domains [Letham ez al., 2015]. An influential
study on the importance of checklists [Gawande, 2010] finds
that highly complex and specialized problems can be handled
smoothly by developing checklists and consistently using and
improving them. An example of such a tool in medicine is
the clinical prediction rule for estimating the risk of stroke,
known as CHADS?2 score [Gage er al., 2001]. Another ex-
ample is a psychometric test, known as Myers—Briggs Type
Indicator (MBTI) [Briggs, 1976], which indicates differing
psychological preferences in how people perceive the world
around them and make decisions.

The earliest interpretable models include decision
trees [Bessiere et al, 2009; Quinlan, 2014], decision
lists [Rivest, 1987], and classification rules [Cohen, 1995;
Dash et al., 2018]. More recently, a Bayesian frame-
work has been adopted to learn rule sets [Wang er al.,
20171, rule lists [Letham er al, 2015], and falling rule
lists [Wang and Rudin, 2015]. Building on the connection
between rule learning and Boolean compression sensing, a
rule-based classification system was proposed to trade-off
classification accuracy and interpretability [Malioutov and
Varshney, 2013]. Su et al. 2015 proposed an extension that
allows two-level Boolean rules. In addition to designing
interpretable classifiers, there is a large body of work to
find the interpretation of opaque models (model-agnostic
interpretability) [Lakkaraju er al., 2019; Ribeiro e al., 2016;
Lundberg and Lee, 2017]. While our work can also be
applied to interpret black-box classifiers, we do not pursue
this direction in this paper.

The simplest logical rules are single level-rules: ORs or
ANDs of a subset of literals (please see Section 2 for a for-
mal definition). An OR operator requires 1 out of NV literals
to be assigned to 1 (true), while an AND operator requires
all N out of N literals to be assigned to 1. A clause is a
collection of literals connected by Or/AND. A CNF (Con-
junctive Normal Form) formula is a conjunction (AND) of
clauses where each clause is a disjunction (OR) of literals,
while a DNF (Disjunctive Normal Form) formula is a disjunc-
tion of clauses where each clause is a conjunction of literals.
We refer to CNF and DNF formulas as two-level rules. A
recent body of work has studied sparsity-inducing objectives



for classification rules in CNF or DNF form and demonstrated
that they often achieve high interpretability with minimal sac-
rifice in classification accuracy [Malioutov and Meel, 2018;
Lakkaraju et al., 2019; Ghosh and Meel, 2019]. In this paper,
we consider a richer set of logical formulas that still allow
high interpretability. We consider hard-OR clauses, where
at least M > 1 out of N literals need to be active (true),
and we similarly define soft-AND clauses which allow some
of the literals (at most N — M) to be inactive (false)!. To
extend the standard definition of CNF (ANDs of ORs), we
define relaxed-CNF to denote soft-ANDs of hard-ORs. Simi-
larly, relaxed-DNF is hard-ORs of soft-ANDs. In early work,
Craven et al. 1996 considered M -of-N rules to explain black-
box neural-network classifiers. Recently, Emad et al. 2015
has developed a semiquantitative group testing approach for
learning sparse single level M -of-N rules, which are quite re-
strictive in their ability to fit the data. In this work, we study
a much richer family of two-level relaxed-CNF rules.

Example 1.1. We present a toy example to illustrate a
relaxed-CNF rule which we learn for Breast Cancer Wiscon-
sin Diagnostic Data Set (WDBC ) from UCI repository. The
dataset is used to predict whether the cancer is benign or ma-
lignant based on the characteristics of a tumor cell. Our pro-
posed framework can generate the following rule for detect-
ing malignant cancer.

Tumor is diagnosed as malignant if, [( smoothness > 0.089
+ standard error of area > 53.78 4 largest radius >
18.225) > 2] +

[(98.76 < perimeter < 114.8 + largest smoothness

0.136 + 105.95 < largest perimeter < 117.45) > 2] > 1

2
2

The generated rule has two clauses, each clause consisting
of three literals, that are the characteristics of a tumor cell. In
this rule, a clause is satisfied if two out of three characteristics
match. Finally, the rule predicts malignant cancer if at least
one out of two clauses is satisfied. Since each clause has three
literals, we measure rule-size as 3 + 3 = 6. We believe that
this type of rule is intuitive and helpful to human experts in
decision making.

Relaxed-CNF rules are more flexible than pure CNF rules
and can accurately fit more complex classification bound-
aries. For example, relaxed-CNF clauses allow one to en-
code the majority function, which would require exponen-
tially many clauses in CNF, showing the exponential gap
in succinctness of the two representations. We argue that
relaxed-CNF rules are about as interpretable as plain CNF
rules, with higher expressibility. Specifically, relaxed-CNF
and CNF rules have the same functional form where a user
has to compute the sum of satisfied literals/clauses and then
compare the sum to different thresholds. If he/she could eval-
uate a CNF rule with a given number of literals in clauses,
then he/she should be able to evaluate a relaxed-CNF rule of
the same form/size as well.

! An astute reader would notice that these definitions overlap. We
use the term hard-OR when M is closer to 1, and use soft-AND
when M is closer to N.

The primary contribution of this paper is a framework for
learning relaxed-CNF rules which we call IRR (Interpretable
Rules in Relaxed form). We propose an Integer Linear Pro-
gramming (ILP)-based approach for learning optimal rules.
To learn a k-clause relaxed CNF rule (say R) with a direct
(naive) ILP formulation, the size of ILP query expressed as
the number of constraints is O(n - k), where n is the number
of samples in the training dataset. Such an approach would
suffer from poor scalability for large datasets. To address
this, we propose an incremental approach for learning R via a
partition-based training methodology. Through a comprehen-
sive experimental evaluation over datasets from the UCI and
Kaggle repository, we observe that IRR with relaxed-CNF
rules achieves an improved trade-off between accuracy and
rule sparsity while still allowing run-time scalability owing to
the incremental approach. We also find that smaller relaxed-
CNF rules reach the same level of accuracy compared to plain
CNF/DNF rules and decision lists.

2 Preliminaries

We use capital boldface letters such as X to denote matrices
while lower boldface letters y are reserved for vectors/sets.
For a matrix X, X; represents the i-th row of X while for a
vector/set y, y; represents the ¢-th element of y.

Let F be a Boolean formula and b = {b1,bs,...,b,,} be
the set of boolean propositional variables appearing in F'. A
literal v; is a variable (b;) or its complement (—b;). A satisfy-
ing assignment or a witness of F' is an assignment of vari-
ables in b that makes F' evaluate to 1. If o is an assign-
ment of variables and b; € b, we use o(b;) to denote the
value assigned to b; in o. F' is in Conjunctive Normal Form
(CNF) if F := /\?:1 Cj, where each clause C; 1= \/; v; is
represented as a disjunction of literals. Let 1;.,, = 1 and
ltaise = 0. Motivated by checklists, we propose relaxed-
CNF where in addition to F', we have two more parame-
ters 7). and ;. We say that (F, 7., ;) is in relaxed-CNF if

o = (F,ne,m) whenever S2F Lo(cim)) = Me where
o = (Ciym) iff Y- co. Lokv) = m- Informally, o satisfies
a clause (C;, ;) if it at least »; literals in C; are set to true
by o and o satisfies (F, 7, ;) if at least . of {(C;,m;)} are
satisfied. In example 1.1, 7. = 1 and n; = 2.

Between two vectors u and v over boolean variables or
constants (e.g., 0, 1) we use uov to denote the inner product,
ie. uov = > (u; - v;), where u; and v; denote a vari-
able/constant at the ¢-th index of u and v respectively. In this
context, note that the operation “-” between a variable and a
constant follows the standard interpretation, i.e. 0 - b = 0 and
1-b=0b.

We consider a standard binary classification problem,
where we are given a collection of training samples
{(X;,yi)}. Each vector X; € X contains the valuation of the
features x = {x1,x2,..., %, for sample 4, and y; € {0, 1}
is the binary label for sample 7. A classifier R is a mapping
that takes in a feature vector x and returns a class § € {0, 1},
i.e. § = R(x). The goal is not only to design R to approxi-
mate our training set, but also to generalize to unseen samples
arising from the same distribution. We focus on classifiers
that can be expressed as relaxed-CNF. We use clause(R, i)



to denote the i-th clause of R, and |clause(R, )| denotes the
size of clause(R, ), which is measured as the number of lit-
erals in ¢-th clause. Furthermore, we use |R| to denote the
rule-size of classifier R, which is defined as the number of
literals in all the clauses, i.e. |R| = X;|clause(R, 7)|.

In this work, we consider the learning problem as an op-
timization problem wherein we reduce the construction of
‘R to computing assignments of appropriately designed vari-
ables. An optimization problem consisting of boolean vari-
ables can be solved using Integer Linear Programming (ILP)
where each variable takes value either 0 or 1. > Given an
objective function and a set of constraints comprising of vari-
ables with range {0, 1}, ILP finds an optimal assignment of
variables which minimizes the objective function.

3 Problem Formulation

We now present the formal definition of the problem. Given
(i) an instance space (X,y), where X € {0,1}™*™ is the
feature matrix with m binary features and n samples, and
y € {0,1}™ is the label vector, (ii) a positive integer k in-
dicating the number of clauses, (iii) a positive integer thresh-
old 7; indicating the minimum number of literals required to
be assigned 1 to satisfy a clause (1, € {1,...,m}), (iv) a
positive integer threshold 7. indicating the minimum num-
ber of clauses required to be satisfied to satisfy a formula
(m. € {1,...,k}), and (v) data fidelity parameter )\, we
learn a classification rule R which is expressed as a k clause
relaxed-CNF formula.

Our goal is to find rules that balance two goals: of be-
ing accurate but also interpretable. Various notions of inter-
pretability have been proposed in the context of classification
problems. A common proxy for interpretability in the context
of decision rules is rule’s sparsity. Namely, a rule involving
fewer literals is more interpretable. In our problem setting,
we minimize the total number of literals in all clauses, which
motivates us to find R with minimum |R|. In particular, sup-
pose R classifies all samples correctly, i.e. Vi,y; = R(X;).
Among all the rules that classify all samples correctly, we
choose the sparsest (most interpretable) such R.

n%n |R| such that Vi, y; = R(X;)

In practical classification tasks, perfect classification is
very unlikely. Hence, we need to balance interpretability with
prediction error. Let £ be the set of samples which are mis-
classified by R, i.e. Er = {X;|y; # R(X;)}. Hence we aim
to find R as follows®.

m%n |R| + /\|ER‘ such that VX, € Er,y; # R(X,)

Here ) is the data-fidelity parameter, which serves to bal-
ance the trade-off between prediction accuracy and inter-
pretability. Higher values of A\ produces lower prediction er-

The problem can be viewed as either ILP or MaxSAT, but we
obtained better performance from ILP solvers.

3In our formulation, it is straightforward to add class-conditional
weights (e.g. to penalize false-alarms more than mis-detects), and to
allow instance weights (per sample).

rors by sacrificing the sparsity of R, and vice versa. It can be
viewed as an inverse of the regularization parameter.

4 IRR: Interpretable Rules in Relaxed Form

In this section, we describe the main contribution of our work,
IRR, an interpretable machine learning framework for learn-
ing relaxed-CNF rules. IRR converts the learning problem
into an ILP-based formulation, learns the optimal assignment
of variables and constructs rule R based on the assignment.
We organize the rest of this section as follows. We discuss
ILP variables in Section 4.1, the constraints in Section 4.2
and feature discretization in Section 4.3.

4.1 Description of Variables

IRR considers two types of decision variables: (i) feature vari-
ables and (ii) noise (classification error) variables. Since fea-
ture x; can be present or not present in each of k clauses, IRR
considers k variables, each denoted by b; corresponding to
feature x; to denote its participation in the i-th clause. When
assignment a(bg) = 1, x; participates in the i-th clause of
R. The g-th sample, however, can be misclassified by R.
Therefore, IRR introduces a noise variable £, € {0,1} cor-
responding to the g-th sample, so that the assignment of &,
can be interpreted whether X, is misclassified by R (when
o(&,) = 1) or not. Hence the key idea of IRR for learning R
is to define an ILP query over & X m + n decision variables,
denoted by {b},b3, ..., 6L ... bE & ... &, ). In this con-
text we define B; = {b | j € {1,...,m} as a vector of
feature variables corresponding to the i-th clause.

4.2 Construction of ILP Query

At first, we discuss the objective function of the ILP query
@ for learning a k-clause relaxed-CNF rule R. The objective
function takes care of both the interpretability and the pre-
diction accuracy of R. Since IRR prefers a sparser rule with
as few literals as possible, we construct the objective func-
tion by preferring b;- to be 0. Moreover, R should predict
the training samples accurately, which penalizes the number
of variables 7, that are different from 0. In this context, we
utilize the parameter \ to trade off between sparsity and ac-
curacy. Therefore, the objective function of the ILP query )
is to minimize the sum of all feature variables b; and noise
variables £, weighed by data-fidelity parameter A (Eq. 1a).

We formulate the constraints of the ILP query () as follows.
Initially, we define the range of the decision variables and add
constraints accordingly (Eq. 1b and 1c). For each sample, at
first, we add constraints to mimic the behavior of hard-OR
of literals in a clause, and then we add constraints to apply
soft-AND of clauses in a formula.

Let us consider that the ¢-th sample has positive class label
(Eq. 1d). X, o B; > 1, resemblances the hard-OR opera-
tion of literals in a clause. We introduce k additional vari-
ables &4.1,...,&,,% to check whether at least 7, clauses are
satisfied, which let us impose the operation of soft-AND over
clauses. Note that £, ; is assigned to 1 when the i-th clause
is not satisfied. Therefore we add a constraint to make sure
that at most k& — 7, clauses are allowed to be not satisfied,



otherwise the noise variable ¢, is assigned to 1, i.e. the g-th
sample is marked as noise.

A negative labeled sample has to dissatisfy more than k—7,
clauses in R so that the sample is predicted as 0. Hence, if
the g-th sample has negative label (Eq. le), more than k& — 7,
constraints X, o B; < n; have to be satisfied. Therefore, for
negative labeled samples, we restrict the count of dissatisfied
clauses Zle &q,: to be less than 7.

We present the ILP query () as follows.

k. m n
min Y N b+ A ¢, (1)
qg=1

i=1 j=1
such that,

b;E{0,1},i:1,...,k,j=1,...,m (1b)
& €{0,1},g=1,...,n (1c)
ifvVge {l,...,n}, ify, =1, (1d)

XgoBi+mégs >m,i=1,...,k

k
Ko +k—ne> &
i=1
&i€{0,1},i=1,...,k
ifVge{l,...,n},y, =0, (le)
quBi<nl+m§q,i7i:17~-~»k

k
k&g +me > Z €q.i
=1

fq,i6{071}7i:1,...,k

We can also learn 1, € {1,...,k} and g, € {1,...,m}
jointly with the original problem by putting their ranges as
constraints in (). These additional constraints make the ILP
query more expensive. Since the number of clauses in R is
often less than the total feature count (i.e., K < m) in practice,
we additionally learn 7. in our experiments in Section 6.

An ILP solver can take query @ as input and returns the
optimal assignment o*of the variables. We extract relaxed-
CNF rule R from the solution as follows.

Construction 1. Let o* = ILP(Q), then z; € clause(R, 1)
iff o (b%) = 1.

Remark: IRR learns classification rules in relaxed-CNF
form. To learn a CNF rule one can set 7; = 1 and 7. = k.

The following theorem states the succinctness of a clause
in a relaxed-CNF rule [Benhamou et al., 1994].

Theorem 2. Let (C,7n) be a relaxed-CNF clause where C
has m literals and 7 is the threshold on literals. An equivalent
compact encoding of (C,n) into a CNF formula F' = A, C;
requires (mf'; +1) clauses where each clause is distinct and
has m — n + 1 literals of (C, n). Therefore, the total number

of literals in F'is (m —n + 1) (mfgﬂ).

Due to lack of space, the proof is removed.

4.3 Learning on Non-binary Features

Since our problem formulation requires input instances to
have binary features, datasets with categorical and continuous
features require a preprocessing stage. Initially, for all contin-
uous features, we apply entropy-based discretization [Fayyad
and Irani, 1993] to infer the most appropriate number of cat-
egories/intervals by recursively splitting the domain of each
continuous feature to minimize the class-entropy of the given
dataset*. For example consider that z. € [a,}] is a contin-
uous feature, and entropy-based discretization splits the do-
main [a, b] into three intervals with two split points {a’, b'},
where a < a’ < b’ < b. Therefore, the result intervals are
ze<a',d <z.<b,andz. > V.

After applying entropy-based discretization on continu-
ous features, the dataset contains only categorical features,
which can be converted to binary features using one-hot en-
coding [Ghosh and Meel, 2019; Lakkaraju et al., 2019]. In
this encoding, a boolean vector is introduced with cardinality
equal to the number of distinct categories. For example let
a categorical feature have three categories ‘red’,‘green’, and
‘yellow’. In one hot encoding, samples with category-value
‘red’,‘green’, and ‘yellow’ would be converted into binary
features while taking values 100, 010, and 001 respectively.

5 A Fast Learning Approach

In this section, we describe an incremental approach to IRR,
called inc-IRR, for learning a k-clause relaxed-CNF rule R.
We have described an ILP-based learning technique in Sec-
tion 4 which generates an optimal rule. The number of con-
straints in the ILP query is linear with the number of training
samples, which results in poor scalability for larger datasets.
Hence, we propose an incremental learning technique via
a partition-based training methodology [Ghosh and Meel,
2019]. In this context, we define ‘R, to be the rule learned
for the p-th partition. The key idea of incremental learning is
to divide the training dataset into a fixed number of partitions
T, learn rule for each partition in a sequential order such that
‘R, depends not only on the training samples in the p-th parti-
tion but also regularizes itself with the rule R,,_; learned for
the (p — 1)-th partition. To this end, we use notation (X?, yP)
to refer to the training data for the p-th partition. We assume
that Vp € {1,...,7},|XP| = n,. We propose the following
modifications in the ILP-based formulation for incrementally
learning relaxed-CNF rules.

5.1 ILP Query of Inc-IRR

In the incremental approach, we emphasize the assignment
of the feature variables in the previous partition while con-
structing the ILP query for the current partition. This tech-
nique enables us to update the learned rule over partitions.
Let us assume that we will construct query @, for the p-th
partition of training data. We consider an indicator function
I(-) : by — {1, —1}, which takes a feature variable b’; as in-
put and outputs —1 if b; is assigned 1 while solving @),,—; for

“A simple quantile-based discretization also works, but it re-
quires an extra parameter (i.e. the number of quantiles).



the (p — 1)-th partition (i.e., feature z; is in the i-th clause of
‘Rp—1), otherwise outputs 1.

; —1 ifx; € clause(Rp_1,1)
I(b) = J pP—L
®5) {1 otherwise

If a feature x; is in R,_1, we try to keep x; in R, by
modifying the objective function for ), as follows:

k m N,
min > Y b I(B) + A &,
qg=1

i=1 j=1

Here we consider that the final rule R is equivalent to R -
which is learned for the last partition.

6 Experiments

We implemented a prototype of IRR (and inc-IRR)’ based on
the Python API for CPLEX® (version 12.8) and conducted an
extensive rigorous empirical analysis to understand the be-
havior of IRR on real-world instances. The objective of our
experimental evaluation was to answer the following ques-
tions:

1. Can inc-IRR handle and scale large datasets arising in
ML problems in practice?

2. How does the test accuracy of inc-IRR compare vis-a-vis
the state of the art classifiers?

3. Are the rules generated by inc-IRR interpretable to the
end users?

4. How do the training time, accuracy and rule size vary
with n;, A\, k, and 77

In summary, inc-IRR achieves comparable prediction ac-
curacy vis-a-vis other state of the art classifiers while scaling
to large instances. The impressive scalability of inc-IRR with
negligible loss of accuracy illustrates the strength of the in-
cremental approach. Furthermore, we observe that by using
an explicit objective function in an optimization framework,
we are able to generate rules with fewer terms in compari-
son to other interpretable classifiers. Finally, we perform an
exhaustive analysis of the performance behavior of IRR and
inc-IRR for various parameters such as 7;, A, k, and 7.

6.1 Experiment Methodology

We performed experiments on a high-performance computer
cluster, where each node consists of E5-2690 v3 CPU with
24 cores, 96 GB of RAM. Each experiment was run on four
cores of a node with 16 GB memory. We compare the perfor-
mance of both IRR and inc-IRR with other state of the art in-
terpretable and non interpretable classifiers, e.g. IMLI [Ghosh
and Meel, 2019], RIPPER [Cohen, 1995], BRS [Wang et al.,
20171, random forest (RF), support vector classifier (SVC),
nearest neighbors classifiers (NN), and /; penalized logistic
regression (LR). IMLI generates classification rules in CNF
and we use Open-WBO [Martins er al., 2014] as the MaxSAT

Shttps://github.com/meelgroup/IRR
Swww.cplex.com

solver for IMLI. We also used a classical (but still very
competitive) propositional rule learning algorithm RIPPER,
which is implemented in WEKA [Hall et al., 2009]. BRS
is a Bayesian framework for generating rule sets expressed
as DNF. For other classifiers, we use Scikit-learn module of
Python [Pedregosa et al., 2011].

We consider a comparable number (10) of hyper-parameter
choices for each classifier. Specifically, we control the cut-
off of the number of examples in the leaf node in the case
of RF and RIPPER. For SVC, NN, and LR we discretize
the regularization parameter on a logarithmic grid. For BRS,
we vary max clause-length ({3, 4, 5}), support ({5,10,15}),
and two other parameters s € {100, 1000, 10000} and p €
{0.9,0.95,0.99}. For IMLI, IRR, and inc-IRR, we have con-
sidered three choices of A € {1,5,10}, three choices of
k € {1,2,3}. In addition, we consider three choices of
m € {1,2,3} for both IRR and inc-IRR. We learn the value
of n. from the data for both IRR and inc-IRR. For inc-IRR
and IMLI, we vary the number of partitions 7 such that each
partition has at least 32 samples and at most 512 samples. In
CPLEX, we set MIP gap tolerance to 0.01 and the maximum
solving time to 2000 seconds. We present the current best so-
lution of CPLEX when the solver times out while finding the
optimal solution. For all other classifiers, we set the training
cut off time to 2000 seconds.

6.2 Results

Performance Evaluation Among Different Classifiers:

We perform an assessment of accuracy on ten fold cross val-
idation set (90% training set, 10% test set). For each param-
eter choice, we compute the median accuracy over the cross-
validation folds, and report the best parameter choice for each
classifier. In Table 1, we present the best test accuracy and
corresponding training time of different classifiers for differ-
ent datasets’. The second and third column of the table shows
the number of samples and features (after discretization) of a
dataset respectively. From column four to 12, we present the
test accuracy and training time (within parentheses) of each
classifier for each dataset.

First, we observe that IRR times out on larger instances, po-
tentially producing sub-optimal rules with reduced accuracy,
thereby highlighting the need for the incremental approach.
On the other hand, inc-IRR can handle most of the instances
within the allotted amount of time. Observe that the com-
plexity of the ILP formulation in Eq. 1 depends both on the
dataset (for inc-IRR, it is the samples in a partition) and the
parameters of the desired rule. Therefore, it is interesting to
observe that inc-IRR may take higher training time for small
datasets compared to large datasets. It is worth noting that the
testing time is insignificant (less than 0.01s) for both IRR and
inc-IRR.

At this point, one wonders whether we are able to generate
succinct rules in comparison to other interpretable classifiers.
To this end, we show the size of the most accurate rules by
various interpretable classifiers in Table 2. The first column
lists the benchmarks while column two to five lists the size of

7 Generated relaxed-CNF rules and additional figures can be
found at https://tinyurl.com/relaxed-CNF



Dataset Size|Features LR NN SVC RF| RIPPER BRS IMLI IRR inc-IRR
Parkinsons 195 51| 94.44 94.87 95.0 92.5 90.0 95.0 94.72 94.87 94.72
(2.0s)| (1.94s)| (1.88s)| (4.93s)| (5.28s)| (1.71s) (3.09s)| (104.2s) (4.66s)

Heart 303 31| 86.21 83.6 85.48| 83.87 81.59 80.65 80.65 86.65 86.44
(1.74s) (1.5s)| (1.52s)| (4.53s)| (4.72s)| (2.76s) (2.95s) (2000s) (2000s)

Tonosphere 351 144  95.63 92.98 92.73| 94.28 92.81 94.12 91.3 95.59 91.67
(3.21s)| (1.64s) (1.6s)| (4.62s)| (5.22s)((224.42s)| (14.94s)|(1773.17s) (2.08s)

WDBC 569 88| 96.52 96.49 98.23| 96.49 96.49 97.35 96.46 97.34 96.49
(3.2s)| (1.64s)| (1.56s)| (4.89s)| (5.05s)| (65.91s) (2.58s) (2000s)| (10.96s)

ILPD 583 14| 71.19 71.56 71.19] 71.19 72.41 66.67 71.31 69.57 74.14
(1.74s)| (1.55s)| (1.54s)| (4.46s)| (4.79s)| (2.75s) (7.54s) (5.44s) (2.69s)

Pima 768 30| 79.74 79.22 77.13|  78.57 77.27 77.92 74.51 78.57 77.27
(2.54s)| (1.64s)| (1.63s)| (4.71s)| (4.92s)| (2.83s)| (20.95s) (2000s) (2000s)

Tic Tac Toe 958 27]  98.44 87.5 98.44| 99.47 98.44 100.0 82.72 84.37 84.46
(2.71s) (1.6s)| (1.64s)| (5.28s) (5.1s)| (1.62s)| (459.93s) (2000s) (2000s)

Titanic 1309 26| 79.31 77.1 78.54| 79.01 78.63 77.78 79.01 81.22 78.63
(3.1s)| (1.68s)| (1.69s)| (5.16s)| (5.06s)| (1.64s) (3.865)|(1669.87s)| (197.94s)

Compas 7210 19| 67.75 66.71 66.02| 67.27 67.34 35.64 66.37 67.89 65.81
(3.92s)| (8.09s)| (9.31s)[(20.86s)| (6.18s)| (2.34s) (5.07s)| (162.13s) (3.2s)

Tom’s HW 28179 910] 97.55 o 97.6] 97.46 97.6 o 96.01 97.34 96.52
(6.0s) (369.76s)|(82.44s)| (38.99s) (85.04s) (2000s)| (1956.6s)

Credit 30000 110 82.33 80.69 82.17| 82.12 82.13 o 81.75 82.15 81.94
(7.76s)|(315.02s)|(386.28s) |(45.87s)| (16.61s) (26.58s) (2000s) (27.7s)

Adult 32561 144| 87.19 84.72 87.19| 86.98 84.89 o 83.63 85.23 83.14
(7.07s)|(505.48s)|(511.57s) | (47.18s)| (52.38s) (1999.41s) (2000s)| (1959.2s)

Twitter 49999 1511] 96.37 o o 96.48 96.14 o 94.57 95.44 93.22
(10.28s) (378.65)|(162.02s) (241.63s) (2000s)((1216.86s)

Table 1: Comparisons of test accuracy and training time for ten fold cross-validation for different classifiers. Every cell in the last nine
columns contain the best test accuracy (%) and corresponding train time in seconds (within parentheses).

Dataset RIPPER | BRS | IMLI | inc-IRR
Parkinsons 10.5 | 13.0 7.5 5.0
Heart 7.0 | 35.5 | 14.0 19.5
Ionosphere 11.0 4.0 8.5 6.0
WDBC 7.0 | 18.0 | 11.0 10.0
ILPD 5.0 3.0 5.0 2.0
Pima 8.0 8.0 | 15.0 21.5
Tic Tac Toe 25.0 | 24.0 | 11.5 12.0
Titanic 5.0 2.0 7.0 12.5
Compas 12.5 8.0 4.0 3.0
Tom’s HW 16.5 — 32.0 5.5
Credit 330 | — 9.0 3.0
Adult 106.0 | — 35.5 13.0
Twitter 56.0 | — 67.5 7.0

Table 2: Size of the rules generated by interpretable classifiers.

generated rules by RIPPER, BRS, IMLI, and inc-IRR. Note
that inc-IRR is able to generate significantly smaller rules for
larger datasets where RIPPER and IMLI tend to require tens
of terms. For larger benchmarks, BRS fails to generate rule
due to poor scalability. At this point, it is worth recalling that
rules generated by inc-IRR are highly interpretable (Exam-
ple 1.1) and can be explained to users in the form of checklists
— a format widely adopted in several safety-critical domains.

Varying Model Parameters:

In Figure 1, we demonstrate the effect of varying the parame-
ters of IRR and inc-IRR while generating relaxed-CNF rules.
To understand the effect of a single parameter, we fix the val-
ues of other parameters to a default choice, wherein the de-
fault choice results in the most accurate rule.

Varying Threshold (7;): As the threshold value on literals
7, increases, it constrains the underlying clause necessitating
for more literals. The behavior is observed for all datasets,
and here we show results for Titanic dataset. The added flex-
ibility due to the addition of more literals allows the rule to
generalize well, increasing the average cross-validation test
accuracy. Similar to test accuracy, train accuracy also in-
creases. Moreover, the ILP query becomes more expensive
for a higher value of 7; and requires more training time.

Varying Data Fidelity Parameter ()\): As we increase A
(inverse to regularization parameter), we find that the average
test and train accuracy increases while learning relaxed-CNF
rules. The average size of the rules also increases with the
increase of A because of putting less weight on the sparsity of
rules. This suggests that improved interpretability can often
come at a minor cost in accuracy.

Varying The Number of Partitions (7): As we make
more partitions of the training data in our incremental ap-
proach, the number of training samples in each partition de-
creases, which incurs an over-fitting in train accuracy and
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Figure 1: Effect of varying threshold 7;, data fidelity parameter A, number of partitions 7, and number of clauses k while learning relaxed-CNF

rules for Titanic dataset.

also a decrease in test accuracy. Moreover, the rules become
shorter in our observation. The remarkable contribution of
partitioning is a significant reduction in training time because
of solving smaller size queries. Therefore, the choice of 7
provides a trade-off between accuracy and training time.

Varying The Number of Clauses (k): As we increase k,
IRR allows the generated rules to capture the variance in the
given dataset more effectively, which results in higher aver-
age test accuracy. The rule-size also increases as we increase
k. We also find an increase in train accuracy. Moreover, the
training time also increases, since the number of constraints
in the ILP formulation is linear with k.

7 Conclusion

In this paper, we propose relaxed-CNF rules, which allow in-
creased flexibility to fit the data, while retaining high inter-
pretability of CNF rules. Recent work has focused on closely
related single-level M-of-N rules and in this work, we focus
on multi-level rules, which can be viewed as extensions of
checklists used in safety-critical domains. We demonstrate
on experiments that relaxed-CNF rules offer succinctness in
comparison to other state of the art interpretable classification
techniques while still scaling to large instances.
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