PROBLEM STATEMENT

Let $X = \text{non-protected attributes}$, $A = \text{protected attributes}$, $\hat{Y} = \text{predicted class label}$

Given

- binary classifier $\mathcal{M} : (X, A) \rightarrow \{0, 1\}$ and
- probability distribution $X \sim \mathcal{D}$,

verify whether \mathcal{M} achieves independence and separation fairness metrics with respect to the distribution \mathcal{D}

Fairness Metrics

Independence: A classifier satisfies $(1 - \epsilon)$-disparate impact (DI) if, for $\epsilon \in [0, 1]$,

$$\min_{a \in A} \Pr[\hat{Y} = 1|a, \mathcal{M}] \geq (1 - \epsilon) \max_{b \in A} \Pr[\hat{Y} = 1|b, \mathcal{M}].$$

Separation: A classifier satisfies ϵ-statistical parity if, for $\epsilon \in [0, 1]$,

$$\max_{a, b \in A} |\Pr[\hat{Y} = 1|a, \mathcal{M}] - \Pr[\hat{Y} = 1|b, \mathcal{M}]| \leq \epsilon.$$

CONTRIBUTION

A formal and scalable fairness verification framework, named Justicia, based on Stochastic SAT

- Two fairness definitions: independence and separation
- Handle compound protected groups such as White-male, Black-female etc.

Python library: pip install justicia

KEY OBSERVATION

Computing the positive predictive value (PPV) of the classifier

$$\Pr[\hat{Y} = 1|A = a]$$

is the building block of verifying different fairness metrics

STOCHASTIC SAT (SSAT)

Compute probability of satisfaction of a CNF formula Φ given quantification over its variables

$$\Phi = Q_1X_1, \ldots, Q_MX_M; \phi_{\text{prefix}}$$

where $Q_i \in \{\exists, \forall, b^0\}$ is either an existential (\exists), an universal (\forall),or a randomised (b^0) quantifier with $p_i = \Pr[X_i = \text{TRUE}]$

Semantics. Recursively eliminate the outermost quantifier of X

1. $\Pr[\text{TRUE}] = 1$, $\Pr[\text{FALSE}] = 0$.
2. $\Pr[\Phi] = \max_{X} \{\Pr[\Phi|X], \Pr[\Phi|\neg X]\}$ if X is \exists quantified
3. $\Pr[\Phi] = \min_{X} \{\Pr[\Phi|X], \Pr[\Phi|\neg X]\}$ if X is \forall quantified
4. $\Pr[\Phi] = \rho \Pr[\Phi|X] + (1 - \rho) \Pr[\Phi|\neg X]$ if X is b^0 quantified

Example. $\Phi = b^{0.25} X_1, \exists X_2, \exists X_3; (X_1 \lor \neg X_2) \land (\neg X_1 \lor X_2 \lor X_3) \land (\neg X_1)$ such that $\Pr[\Phi] = 0.75$

ENCODING CORRELATION

Use conditional probability $\Pr[F|\text{age} \geq 40]$ instead of $\Pr[F]$

$$\Phi_{\text{age} \geq 40} := b^{0.01} F, b^{0.09} I, b^{0.08} J; \exists A; (\neg F \lor I) \land (F \lor J) \land A$$

Disparate impact $= \frac{0.18}{0.72}$; Statistical parity $= |0.18 - 0.72| = 0.54$

APPRAOCH 2 : LEARNING

Learning the most favored group

$$\Phi := \exists A, b^{0.41} F, b^{0.93} I, b^{0.09} J; (\neg F \lor I) \land (F \lor J)$$

Learning the least favored group

$$\Phi := \forall A, b^{0.41} F, b^{0.93} I, b^{0.09} J; (\neg F \lor I) \land (F \lor J)$$

EXPERIMENTAL RESULTS

Accuracy: Justicia shows less than 1%-error

<table>
<thead>
<tr>
<th>Metric</th>
<th>FairSquare</th>
<th>VeriFair</th>
<th>AIF360</th>
<th>Exact</th>
<th>Justicia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparate impact</td>
<td>0.99</td>
<td>0.99</td>
<td>0.25</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Statistical parity</td>
<td>—</td>
<td>—</td>
<td>0.54</td>
<td>0.53</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Scalability: Justicia shows 1 to 3 orders of magnitude speed-up

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Ricci</th>
<th>Titanic</th>
<th>COMPAS</th>
<th>VERI FAIR</th>
<th>Justicia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classifier</td>
<td>DT</td>
<td>LR</td>
<td>DT</td>
<td>LR</td>
<td>DT</td>
</tr>
<tr>
<td>FairSquare</td>
<td>4.8</td>
<td>—</td>
<td>16.0</td>
<td>—</td>
<td>36.9</td>
</tr>
<tr>
<td>VeriFair</td>
<td>5.3</td>
<td>2.2</td>
<td>1.2</td>
<td>0.8</td>
<td>15.9</td>
</tr>
<tr>
<td>COMPAS</td>
<td>11.3</td>
<td>9.3</td>
<td>15.9</td>
<td>11.3</td>
<td>295.6</td>
</tr>
<tr>
<td>Justicia</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Verification of compound protected groups and robustness

<table>
<thead>
<tr>
<th>Metric</th>
<th>FairSquare</th>
<th>VeriFair</th>
<th>AIF360</th>
<th>Exact</th>
<th>Justitia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disparate impact</td>
<td>0.99</td>
<td>0.99</td>
<td>0.25</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>Statistical parity</td>
<td></td>
<td></td>
<td>0.54</td>
<td>0.53</td>
<td>0.54</td>
</tr>
</tbody>
</table>