
INTERPRETABILITY AND FAIRNESS IN MACHINE LEARNING: A
FORMAL METHODS APPROACH

by

BISHWAMITTRA GHOSH

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

GRADUATE DIVISION

of the

NATIONAL UNIVERSITY OF SINGAPORE

2023

Supervisor:
Dr Kuldeep S. Meel

Examiners:
Dr Harold Soh Soon Hong

Dr Reza Shokri

Declaration

I hereby declare that this thesis is my original work and it has
been written by me in its entirety. I have duly

acknowledged all the sources of information which have
been used in the thesis.

This thesis has also not been submitted for any
degree in any university previously.

Bishwamittra Ghosh

August 25, 2023

Acknowledgments

I would like to express my sincere gratitude to everyone who has supported
me throughout my PhD. This has been a journey of self-discovery, patience, and
continuous effort to surpass myself day by day. I am fortunate to have met amazing
researchers around the world, communicating ideas and learning from them. Re-
flecting on Socrates’ famous words, “Know Thyself”, my PhD has been a journey of
understanding my limitations and fostering a mindset of overcoming shortcomings
while enjoying the pursuit of knowledge. At this moment, I truly understand that
the outcome of my PhD goes beyond the thesis itself; it encompasses my personal
growth and development.

I come from a humble background in Bangladesh, where my passion for math,
science, and computer science has always been a driving force. Today, I am immensely
grateful to announce that my dream of pursuing a PhD in computer science has
become a reality. I am deeply thankful to the brilliant minds I have had the privilege
to encounter throughout my doctoral journey.

I am immensely grateful to my advisor, Dr. Kuldeep S. Meel, for playing a crucial
role in my PhD journey. Under his guidance, I have learned the importance of being
an independent researcher and have been provided with numerous opportunities
to achieve this goal. I owe my confidence as a researcher to Kuldeep’s unwavering
support in connecting me with exceptional researchers through conferences, work-
shops, internships, and research visits. His leadership, passion, and dedication have
truly inspired me. I consider myself privileged to have been a part of his research
lab and to have experienced the vibrant research culture it offers. I vividly recall
the early semesters in NUS, where Kuldeep would spend hours discussing with the
research group, creating an environment that fostered growth and learning. As a
new PhD student, his supervision boosted my confidence and enabled me to flourish
in the doctoral program. Kuldeep’s sharp intellect and innovative thinking have not
only made me enjoy graduate school but have also facilitated my personal growth. I
am grateful for his relentless guidance, which has not only enhanced my skills as a
researcher but also shaped me into a better person.

I feel incredibly fortunate to have had the opportunity to collaborate with ex-
ceptional individuals throughout my research journey. Debabrota Basu, Dmitry

i

Malioutov, Krisnha P. Gummadi, Daniel Neider, Arijit Khan, Jonathan Scarlet,
Chandrika Bhardwaj, Vijay Saraswat, Naheed Anjum Arafat, and Lorenzo Ciampi-
coni are among the remarkable collaborators who have generously shared their
knowledge and experience with me. I come to understand that finding a meaningful
research problem is a crucial step and I am grateful to have had the opportunity to
collaborate and brainstorm with such insightful collaborators. In addition, I thank
Harold Soh and Reza Shokri, who examine my thesis with utmost attention. Their
feedback has been a driving force for me to reflect positively on my thesis, building
a mindset for a broader view on research in general.

I would like to express my sincere appreciation to my friends in Singapore
who have provided invaluable support throughout my journey. Neamul Kabir,
Sanjay Saha, Amlan Saha, Rafiul Islam, Zubair Faruqui, Mohimenul Mahi, Ramzan
Miah, Muhim Muktadir Zim, and Shayok Ghosh have been pillars of support and
encouragement. I am also grateful for the exceptional colleagues who have made
a significant impact on my professional growth. Priyanka Golia, Teodora Baluta,
Yash Pote, Arijit Shaw, Suwei Yang, Jiong Yang, Mate Soos, Tim van Bremen,
Anna Latour, Yacine Izza, Gunjan Kumar, Paulius Dilkas, Shubham Sharma, Rahul
Gupta, and Zhanzhong Pang have been sources of inspiration and collaboration.
Additionally, I would like to extend a special thank you to my childhood friends,
Kalyan Roy, Sukanto Kundu, Nayem Ul Haque, and Niranjan Chandra Roy. I am
fortunate to have such a supportive community. I extend my thanks to all the staff
members in SOC, NUS for their exceptional efficiency in addressing out needs.

I would like to express my heartfelt gratitude to my family for their support and
encouragement. My parents, sister, brother-in-law, and uncle have been constant
pillars of strength throughout my journey. While I deeply regret that my father
is not here with me today, I find solace in the belief that his blessings will always
guide me. I am also immensely grateful to my wife, Dola Ghosh, who has been
my unwavering source of support and companionship throughout this challenging
journey. Her presence has made the road to completion much smoother, and I am
grateful for her love and encouragement.

Bishwamittra Ghosh

ii

Contents

Acknowledgments i

Abstract viii

List of Publications x

List of Algorithms xi

List of Figures xii

List of Tables xiv

I Prologue 1

1 Introduction 2
1.1 Interpretable Rule-based Machine Learning 3

1.1.1 Scalability via Incremental Learning 4
1.1.2 Expressiveness via Logical Relaxation 5

1.2 Fairness in Machine Learning . 5
1.2.1 Probabilistic Fairness Verification 6
1.2.2 Interpreting Fairness: Identifying Sources of Bias 8

1.3 Thesis Outline . 8

2 Preliminaries 10
2.1 Formal Methods . 10

2.1.1 Propositional Satisfiability (SAT) 10
2.1.2 Relaxation of Logical Formulas 11
2.1.3 Inner Product . 11

iii

2.1.4 Maximum Satisfiability (MaxSAT) 12
2.1.5 Stochastic Boolean Satisfiability (SSAT) 13
2.1.6 Stochastic Subset Sum Problem 14

2.2 Interpretable Machine Learning . 14
2.2.1 Rule-based Classification . 15
2.2.2 Decision Lists . 15
2.2.3 Decision sets . 16

2.3 Fairness in Machine Learning . 16
2.3.1 Dataset and Distribution . 16
2.3.2 Fairness Metrics . 17

2.4 Bayesian Network . 19
2.5 Global Sensitivity Analysis (GSA): Variance Decomposition 20

II Interpretable Rule-based Machine Learning 22

3 Scalability via Incremental Learning 24
3.1 Related Work . 26
3.2 Problem Formulation . 28
3.3 Interpretable Classification Rule Learning via MaxSAT 29

3.3.1 Description of Variables . 29
3.3.2 MaxSAT Encoding . 30
3.3.3 Learning with Non-binary Features 34
3.3.4 Flexible Interpretability Objectives 34

3.4 Incremental Learning of Interpretable Classification Rules 35
3.4.1 Mini-batch Learning . 35
3.4.2 Iterative Learning . 38

3.5 Learning Other Interpretable Classifiers 40
3.5.1 Learning DNF classifiers . 40
3.5.2 Learning Decision Lists . 41
3.5.3 Learning Decision Sets . 42

3.6 Empirical Performance Analysis . 43
3.6.1 Experimental Setup . 43
3.6.2 Experimental Results . 46

iv

3.7 Chapter Summary . 56

4 Expressiveness via Logical Relaxation 58
4.1 Problem Formulation . 61
4.2 Classification Rules in Relaxed Logical Form 62

4.2.1 Description of Variables . 62
4.2.2 Construction of the ILP Query 63
4.2.3 Incremental Mini-batch Learning 65
4.2.4 Learning with Non-binary Features 67
4.2.5 Learning Rules in Other Logical Forms 68

4.3 Empirical Performance Analysis . 68
4.3.1 Experimental Setup . 68
4.3.2 Experimental Results . 69

4.4 Chapter Summary . 75

III Fairness in Machine Learning 77

5 Fairness Verification using SSAT 79
5.1 An SSAT-based Fairness Verifier . 80

5.1.1 Enumeration Approach using RE-SSAT encoding 81
5.1.2 Inference Approach using ER-SSAT Encoding 85
5.1.3 Practical Settings . 89

5.2 Empirical Performance Analysis . 90
5.2.1 Experimental Setup . 91
5.2.2 Experimental Analysis . 92

5.3 Chapter Summary . 97

6 Handling Feature Correlations in Fairness Verification 98
6.1 Fairness Verification with Graphical Models 99

6.1.1 Stochastic Subset Sum Problem 100
6.1.2 A Dynamic Programming Solution 102
6.1.3 Stochastic Subset Sum Problem with Correlated Variables . 106
6.1.4 Fairness Verification using Probability of Positive Prediction 108

v

6.1.5 Extension to Practical Settings 108
6.2 Empirical Performance Analysis . 109

6.2.1 Scalability Analysis . 110
6.2.2 Accuracy Analysis . 110

6.3 Chapter Summary . 112

IV Epilogue 113

7 Interpreting Fairness: Identifying Sources of Bias 115
7.1 Related Work . 119
7.2 Fairness Influence Functions: Formulation and Properties 119

7.2.1 Fairness Metrics as the Variance of Prediction 120
7.2.2 Formulation of FIF . 121

7.3 An Algorithm to Estimate Fairness Influence Functions 125
7.4 Empirical Performance Analysis . 127

7.4.1 Performance and Functionality in Estimating FIFs 129
7.4.2 Explainability and Applicability of FIFs 133

7.5 Chapter Summary . 134

8 Conclusion And Future Work 136

Bibliography 141

A Interpretable Classification Rules 160
A.1 Performance Comparison: Incremental vs. Non-incremental Encoding 160
A.2 Representative Interpretable Classifiers 161

B Fairness Verification with Feature Correlation 171
B.1 Extended Experimental Results . 171

B.1.1 Accuracy Comparison Among Different Verifiers 171
B.1.2 Scalability Comparison Among Different Verifiers 173
B.1.3 Verifying Fairness Algorithms on Multiple Fairness Metrics . 173
B.1.4 Performance Analysis of Bayesian Network 175

C Feature Correlations in SSAT-based Fairness Verifier 178

vi

D Fairness Influence Functions 181
D.1 Proofs of Properties and Implications of FIF 181
D.2 A Smoothing Operator: Cubic Splines 183
D.3 Computing FIFs for Equalized Odds and Predictive Parity 185

D.3.1 FIFs of Equalized Odds . 185
D.3.2 FIFs of Predictive Parity . 185

D.4 Experimental Evaluations . 186
D.4.1 Experimental Setup . 186
D.4.2 Accuracy: Equalized Odds & Predictive Parity via FIFs. . . 186
D.4.3 Execution Time: Equalized Odds & Predictive Parity via FIFs 186
D.4.4 Ablation Study: Effect of Spline Intervals 189
D.4.5 Ablation Study: Effect of Maximum Order of Intersectionality 189
D.4.6 FIF of Different Datasets . 190

vii

Abstract

Interpretability and Fairness in Machine Learning: A Formal Methods Approach

by

Bishwamittra Ghosh

Doctor of Philosophy in Computer Science

National University of Singapore

The significant success of machine learning in past decades has led to a host of
applications of algorithmic decision-making in different safety-critical domains. The
high-stake predictions of machine learning in medical, law, education, transportation
and so on have far-reaching consequences on the end-users. Consequently, there has
been a call for the regulation of machine learning by defining and improving the
interpretability, fairness, robustness, and privacy of predictions. In this thesis, we
focus on the interpretability and fairness aspects of machine learning, particularly
on learning interpretable rule-based classifiers, verifying fairness, and interpreting
sources of unfairness. Prior studies aimed for these problems are limited by either
scalability or accuracy or both. To alleviate these limitations, we integrate formal
methods and automated reasoning with interpretability and fairness in machine
learning and provide scalable and accurate solutions to the underlying problems.

In interpretable machine learning, rule-based classifiers are particularly effective
in representing the decision boundary using a set of rules. The interpretability of
rule-based classifiers is generally related to the size of the rules, where smaller rules
with higher accuracy are preferable in practice. As such, interpretable classification
learning becomes a combinatorial optimization problem suffering from poor scalability
in large datasets. To this end, we discuss an incremental learning framework, called
IMLI, which applies an iterative solving of maximum satisfiability (MaxSAT) queries
in mini-batch learning and enables classification on million-size datasets. Although
being interpretable, rule-based classifiers often suffer from limited expressiveness,
for example, classifiers based on propositional logic. To learn more expressible yet
interpretable classification rules, we discuss a relaxation of classifiers based on logical
formulas. For learning relaxed rule-based classifiers, we discuss an efficient learning

viii

framework, called CRR, building on incremental learning and mixed integer linear
programming (MILP). CRR obtains higher accuracy yet less rule size than existing
interpretable classifiers.

Fairness in machine learning centers on quantifying and mitigating the bias or
unfairness of machine learning classifiers. In the presence of multiple fairness metrics
for quantifying bias, we discuss a probabilistic fairness verifier, called Justicia, with
the goal of formally verifying the bias of a classifier given the probability distribution
of features. Building on stochastic satisfiability (SSAT), Justicia improves the
scalability of verification; and unlike prior approaches, Justicia verifies compound
sensitive groups combining multiple sensitive features. For a more accurate fairness
verification, we extend Justicia to consider feature correlations represented as a
Bayesian Network, resulting in an accurate verification of fairness.

Fairness metrics globally quantify bias, but do not detect or interpret its sources.
To interpret group-based fairness metrics, we discuss fairness influence function (FIF)
with an aim of quantifying the influence of individual features and the intersection
of multiple features on the bias of a classifier. FIF interprets fairness by revealing
potential individual or intersectional features attributing highly to the bias. Building
on global sensitivity analysis, we discuss an algorithm, called FairXplainer, for
estimating the FIFs of features, resulting in a better approximation of bias based on
FIFs and a higher correlation of FIFs with fairness interventions.

ix

List of Publications
This thesis is based on the following publications.

1. “How Biased are Your Features?": Computing Fairness Influence Functions
with Global Sensitivity Analysis
Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel
In Proceedings of FAccT, 2023

2. Efficient Learning of Interpretable Classification Rules
Bishwamittra Ghosh, Dmitry Malioutov, Kuldeep S. Meel
In Proceedings of JAIR, 2022

3. Algorithmic Fairness Verification with Graphical Models
Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel
In Proceedings of AAAI, 2022

4. Justicia: A Stochastic SAT Approach to Formally Verify Fairness
Bishwamittra Ghosh, Debabrota Basu, Kuldeep S. Meel
In Proceedings of AAAI, 2021

5. Classification Rules in Relaxed Logical Form
Bishwamittra Ghosh, Dmitry Malioutov, Kuldeep S. Meel
In Proceedings of ECAI, 2020

6. IMLI: An Incremental Framework for MaxSAT-Based Learning of Interpretable
Classification Rules
Bishwamittra Ghosh, Kuldeep S. Meel
In Proceedings of AIES, 2019

x

https://arxiv.org/pdf/2206.00667.pdf
https://arxiv.org/pdf/2206.00667.pdf
https://arxiv.org/pdf/2205.06936.pdf
https://arxiv.org/pdf/2109.09447.pdf
https://arxiv.org/pdf/2009.06516.pdf
https://bishwamittra.github.io/publication/ecai_2020/paper.pdf
https://bishwamittra.github.io/publication/imli-ghosh.pdf
https://bishwamittra.github.io/publication/imli-ghosh.pdf

List of Algorithms
1 MaxSAT-based Mini-batch Learning 38
2 Iterative CNF Classifier Learning 39
3 Iterative Learning of Decision Lists 41
4 Iterative Learning of Decision Sets 42
5 Justicia: An SSAT-based Fairness Verifier 85
6 FairXplainer: An algorithm for estimating FIFs 126

xi

List of Figures

3.1 Scalability of Interpretable Classifiers 50
3.2 Training time, test error, and rule size of different formulations in IMLI 52
3.3 Effect of the number of clauses in IMLI 54
3.4 Effect of regularization λ in IMLI . 56
3.5 Effect of batch-size in IMLI . 57

4.1 Illustration of a relaxed-CNF classification rule 60
4.2 Effect of data-fidelity λ in CRR . 73
4.3 Effect of the number of clause k in CRR 74
4.4 Effect of mini-batch size in CRR . 75
4.5 Effect of the number of iterations in CRR 76

5.1 A decision tree classifier on sensitive and non-sensitive features 81
5.2 Fairness verification on compound sensitive groups 93
5.3 Robustness of fairness verification . 96
5.4 Runtime of different encodings in Justicia 96

6.1 Simulation of stochastic subset-sum problem 105
6.2 Scalability of FVGM . 109
6.3 Accuracy of FVGM . 111

7.1 Demonstration of FIF in health insurance 117
7.2 Execution time of FIFs in SP . 130
7.3 FIFs under fairness intervention . 131
7.4 FIFs for COMPAS dataset . 132
7.5 FIFs under fairness affirmative/punitive actions 134

A.1 Scalability: incremental vs. non-incremental encoding 161

xii

A.2 Performance comparison between non-incremental vs. incremental encoding162

B.1 Accuracy of FVGM on logistic regression classifier 172
B.2 Accuracy of FVGM on SVM classifier 173
B.3 Ablation study: effect of the number of features 174
B.4 Verifying fairness poisoning attack using FVGM 175
B.5 Verifying compound sensitive groups using FVGM 176
B.6 Ablation study: effect of Bayesian network on FVGM 177

D.1 Execution time of FIFs . 188
D.2 Ablation study on FIFs: effect of spline intervals 188
D.3 Ablation study on FIFs: effect of maximum order of intersectionality . 189
D.4 FIFs for Adult dataset . 190
D.5 FIFs for Titanic dataset . 191

xiii

List of Tables

3.1 Accuracy and rule-size of interpretable classifiers 47
3.2 Accuracy of IMLI and non-interpretable classifiers 51
3.3 Accuracy and rule-size of different classification rules learned using IMLI 53

4.1 Accuracy, rule-size, and training time of rule-based classifiers 70
4.2 Accuracy of CRR and non-rule-based classifiers 72

5.1 Accuracy of Justicia . 92
5.2 Scalability of Justicia . 93
5.3 Fairness verification of fairness metrics and algorithms 95

7.1 Approximation error of SP using FIFs 129

D.1 Approximation error of EO and PP using FIFs 187

xiv

Part I

Prologue

1

Chapter 1

Introduction
The last decades have witnessed significant progress in machine learning with

a host of applications of algorithmic decision-making in different safety-critical
domains, such as medical [50, 84, 91], law [92, 176], education [109], and trans-
portation [139, 195]. In high-stake domains, machine learning predictions have
far-reaching consequences on the end-users [51]. With the aim of applying machine
learning for societal goods, there have been increasing efforts to regulate machine
learning by imposing interpretability [157], fairness [14], robustness [150], and pri-
vacy [135] in predictions. In this thesis, we focus on the interpretability and fairness
aspects of machine learning. We establish a close integration of formal methods
and automated reasoning with machine learning and discuss efficient algorithmic
solutions for problems arising in interpretability and fairness in machine learning.

Towards responsible and trustworthy machine learning, we discuss two research
themes in this thesis: interpretability and fairness of machine learning classifiers. In
interpretable machine learning, rule-based classifiers effectively represent the decision
boundary using a set of rules comprising input features. Interpretable rule-based
classifiers not only interpret the decision function but also are applied to explain the
prediction of black-box classifiers [63, 112, 124, 151, 170], a fundamental research
question in explainable artificial intelligence (XAI). In this thesis, we discuss efficient
algorithms based on incremental learning for interpretable rule-based classifiers.
In another research theme of fairness in machine learning, unregulated classifiers
tend to exhibit bias/unfairness to certain demographic groups in the data unless
classifiers are trained with a fairness objective. Consequently, research on fairness
centers on quantifying bias using multiple fairness definitions and mitigating bias
based on multiple fairness algorithms. In this thesis, we study probabilistic fairness
verification problem, where we formally verify the bias of a classifier given the

2

probability distribution of input features. Finally, we combine both research themes:
interpretability and fairness and discuss a framework to interpret the sources of
bias. In particular, we formalize and compute fairness influence functions, a way
to quantify the influence of individual and the intersection of multiple features on
the bias of a classifier. To summarize our thesis on interpretability and fairness
in machine learning, we prioritize on improving the scalability and the accuracy of
solutions—either or both of which are absent in prior works.

1.1 Interpretable Rule-based Machine Learning
The problem in interpretable machine learning is to learn a classifier making

interpretable predictions to the end-users. To achieve the interpretability of pre-
dictions, decision functions in the form of classification rules such as decision trees,
decision lists, decision sets, etc. are particularly effective [23, 40, 76, 80, 94, 93, 101,
129, 153, 186, 192]. At this point, it is important to acknowledge that interpretability
is an informal notion, and formalizing it in full generality is challenging. In our
context of rule-based classifiers, we use sparsity of rules (that is, fewer rules each
having fewer Boolean literals), which has been considered a proxy of interpretability
in various domains, specifically in the medical domain [58, 95, 101, 116, 126].

In the thesis, we study two interpretable rule-based classifiers, characterized
by their expressiveness. At first, we study classifiers represented as formulas in
propositional logic. In propositional logic, Conjunctive Formal Form (CNF) and
Disjunctive Normal Form (DNF) are useful representations of Boolean formulas.
Popular interpretable rule-based classifiers such as decision tree, decision lists, and
decision sets share the logical structure of CNF/DNF in their representation of
the decision function. Thereby, we discuss a learning framework for interpretable
CNF classifiers, wherein the interpretability of the classification rule is defined by
the number of Boolean literals in the CNF formula. Compared to CNF, Boolean
cardinality constraints are more expressive as they allow numerical bounds on
Boolean literals [169]. Relying on the concept of cardinality constraints to increase
expressiveness, our second interpretable rule-based classifier is a logical relaxation of
CNF/DNF classifiers, namely relaxed-CNF.

The problem of learning rule-based classifiers is known to be computationally

3

intractable. The earliest tractable approaches for classifiers such as decision trees
and decision lists relied on heuristically chosen objective functions and greedy
algorithmic techniques [36, 37, 146]. In these approaches, the size of rules is
controlled by early stopping, ad-hoc rule pruning, etc. In recent approaches, the
interpretable classification problem is reduced to an optimization problem, where the
accuracy and sparsity of rules are optimized jointly [93, 129]. Different optimization
solvers such as linear programming [116], sub-modular optimizations [93], Bayesian
optimizations [101], and MaxSAT [115] are then deployed to find the best classifier
with maximum accuracy and minimum rule-size. The discrete combinatorial nature
of learning rule-based classifiers leads to the intractability of the problem and suffers
from scalability issues in large datasets. Therefore, we discuss an incremental
learning approach by wrapping traditional optimization solvers such as MaxSAT and
MILP to efficiently learn rule-based classifiers in a mini-batch learning setting. Here
we summarize the contributions of the thesis on interpretable rule-based machine
learning1.

1.1.1 Scalability via Incremental Learning

We discuss an incremental learning framework, called IMLI, based on MaxSAT
for learning interpretable classification rules expressed in CNF. IMLI considers a joint
objective function to optimize the accuracy and sparsity of classification rules and
learns a rule-based classifier by solving an appropriately designed MaxSAT query.
Despite the progress of MaxSAT solving in the last decade, the straightforward
MaxSAT-based solution cannot scale to real-world classification datasets of thousands
to millions of samples. Therefore, we incorporate an efficient incremental learning
technique inside the MaxSAT formulation by integrating mini-batch learning and
iterative rule-learning. The resulting framework learns a classifier by iteratively
covering the training data, wherein in each iteration, it solves a sequence of smaller
MaxSAT queries corresponding to each mini-batch. In our experiments, IMLI achieves
the best balance among prediction accuracy, interpretability, and scalability. For
instance, IMLI attains a competitive prediction accuracy and interpretability with
respect to existing interpretable classifiers and demonstrates impressive scalability

1Corresponding Python library is at https://github.com/meelgroup/mlic.

4

https://github.com/meelgroup/mlic

on large datasets where both interpretable and non-interpretable classifiers fail. As
an application, we deploy IMLI in learning other interpretable representations: DNF
classifiers, decision lists, and decision sets.

1.1.2 Expressiveness via Logical Relaxation

We extend our incremental learning framework to learn a more relaxed represen-
tation of classification rules with higher expressiveness. Elaborately, we consider
relaxed definitions of standard OR/AND operators in propositional logic by allowing
exceptions in the construction of a clause and also in the selection of clauses in a
rule. Building on these relaxed definitions, we introduce relaxed-CNF classification
rules motivated by the popular usage of checklists in the medical domain and the
higher expressiveness of Boolean cardinality constraints. Relaxed-CNF generalizes
widely employed rule representations including CNF, DNF, and decision sets. While
the combinatorial structure of relaxed-CNF rules offers exponential succinctness, the
naïve learning techniques are computationally expensive. To this end, we discuss
an incremental mini-batch learning procedure, called CRR, that employs advances
in MILP solvers to efficiently learn relaxed-CNF rules. Our experimental analysis
demonstrates that CRR can generate relaxed-CNF rules, which are more accurate
and sparser compared to the alternative rule-based models.

1.2 Fairness in Machine Learning
As a technology machine learning is oblivious to societal good or bad. The success

of machine learning as an accurate predictor, however, finds applications in high-stake
decision-making, such as college admission [118], recidivism prediction [178], job
applications [3] etc. In such applications, the deployed classifier often demonstrates
bias towards certain sensitive demographic groups involved in the data [47]. For
example, a classifier deciding the eligibility of college admission may offer more
admission to White-male candidates than to Black-female candidates—possibly
because of the historical bias in the admission data, or the accuracy-centric learning
objective of the classifier, or a combination of both [21, 96, 202]. Following such
phenomena, multiple fairness metrics, such as statistical parity, equalized odds,
predictive parity etc, have been proposed to quantify the bias of the classifier. For

5

example, if the classifier in college admission demonstrates a statistical parity of 0.6,
it means that White-male candidates are offered admission 60% more frequently
than Black-female candidates [22, 54, 60]. To this end, different fairness enhancing
algorithms have been devised to improve fairness with respect to one or multiple
fairness metrics. These algorithms try to rectify and mitigate bias in three ways:
pre-processing the data [85, 196, 28], in-processing the classifier [197], and post-
processing the outcomes of a classifier [86, 69]. There is also study on fairness attack
algorithms to worsen the fairness of a classifier, such as by adding poisoned data
samples [174]. In the presence of multiple fairness metrics and algorithms, in this
thesis, we contribute to two fundamental problems in fairness: (i) probabilistic
verification of fairness2 and (ii) interpreting sources of unfairness3.

1.2.1 Probabilistic Fairness Verification

The problem in probabilistic fairness verification is to verify the bias of a classifier
given the distribution of input features. The early works on fairness verification
focused on measuring fairness metrics of a classifier for a given dataset [17]. Naturally,
such techniques were limited in enhancing confidence of users for wide deployment.
Consequently, recent verifiers seek to achieve verification beyond finite dataset and
in turn focus on the probability distribution of features [4, 15]. More specifically,
the input to the verifier is a classifier and the probability distribution of features,
and the output is an estimate of fairness metrics that the classifier obtains given the
distribution.

In order to solve the fairness verification problem, existing works have proposed
two principled approaches. Firstly, [4] propose a formal method approach to reduce
the verification problem into the weighted volume computation of an SMT formula.
Secondly, [15] propose a sampling approach that relies on extensively enumerating
the conditional probabilities of prediction given different sensitive features and thus,
incurs high computational cost. Additionally, existing works assume feature inde-
pendence of non-sensitive features and consider correlated features within a limited
scope, such as conditional probabilities of non-sensitive features w.r.t. sensitive
features and ignore correlations among non-sensitive features. As a result, the

2Corresponding Python library is at https://github.com/meelgroup/justicia.
3Corresponding Python library is at https://github.com/ReAILe/bias-explainer.

6

https://github.com/meelgroup/justicia
https://github.com/ReAILe/bias-explainer

scalability and accuracy of existing verifiers remain major challenges.

1.2.1.1 Formal Fairness Verification

We discuss an efficient fairness verification framework, starting with a general
approach for finite classifiers by encoding them as Boolean formulas, and later a
special case of linear classifiers. Based on stochastic satisfiability (SSAT) [106],
Justicia verifies the fairness of Boolean classifiers such as decision tree by solving
appropriately designed SSAT formulas. Justicia also extends verification to compound
sensitive groups, which are a combination of multiple categorical sensitive features
such as race ∈ {White, Black} and gender ∈ {male, female}. SSAT encoding, by
construction, allows separate quantification to each sensitive feature without any
restriction on the number of features, thereby it is natural in SSAT-based formulation
to extend the verification problem to multiple sensitive features unlike earlier methods.
In experiments, Justicia is more scalable than the existing probabilistic verifiers [4,
15] because of the efficient SSAT encoding.

1.2.1.2 Tractable Fairness Verification with Feature Correlation

Linear classifiers have attracted significant attention from researchers in the
context of designing and testing prototype fairness enhancing and attack algo-
rithms [143, 194, 45, 82]. In the context of verifying the bias of linear classifiers,
existing fairness verifiers suffer from two-fold limitations: (i) poor scalability due
to applying SSAT/SMT or sampling based techniques and (ii) inaccuracy due to
ignoring feature correlations. To alleviate these limitations, we discuss a fairness
verification framework for linear classifiers, namely FVGM, for an accurate and
scalable fairness verification. FVGM relies on a novel stochastic subset-sum encod-
ing for linear classifiers obtaining an efficient pseudo-polynomial solution using
dynamic programming. To address feature-correlations, FVGM considers a graphical
model, particularly a Bayesian Network to represent the conditional dependence
(and independence) among features in the form of a Directed Acyclic Graph (DAG).
Experimentally, FVGM is more accurate and scalable than existing fairness verifiers;
FVGM can verify group and causal fairness metrics. We also demonstrate two novel
applications of FVGM as a fairness verifier: (a) detecting fairness attacks, and (b)
computing fairness influences of a subset of features on shifting the incurred bias of

7

the classifiers from the original bias.

1.2.2 Interpreting Fairness: Identifying Sources of Bias

Fairness metrics measure global bias, but do not detect or interpret its sources [16,
110, 133]. In order to diagnose the emergence of bias in the predictions of classifier,
it is important to compute explanations, such as how different features attribute
to the global bias. Motivated by the GDPR’s “right to explanation”, research on
interpreting model predictions [151, 112, 111] has surged, but interpreting prediction
bias has received less attention [16, 110]. In order to identify and interpret the sources
of bias and also the impact of affirmative/punitive actions to alleviate/deteriorate
bias, it is important to understand which features contribute how much to the bias of
a classifier applied on a dataset. To this end, we follow a global feature-attribution
approach to interpret the sources of bias, where we relate the influences of input
features towards the resulting bias of the classifier. In this context, existing bias
attributing methods [16, 110] are variants of local function approximation [171],
whereas bias is a global statistical property of a classifier. Thus, we aim to design a
bias attribution method that is global by construction. In addition, existing methods
only attribute the individual influence of features on bias while neglecting the
intersectionality among features. Quantifying intersectionality allows us to interpret
bias induced by the higher-order interactions among features; hence accounting for
intersectionality is important to understand bias as suggested by recent literature [27,
185].

We discuss an algorithm, called FairXplainer, based on global sensitivity analysis to
estimate the fairness influence function (FIF) of individual and intersectional features.
In experiments, FairXplainer approximates bias based on FIFs more accurately than
existing methods. We also demonstrate higher correlation of FIFs with fairness
interventions, thereby demonstrating the importance of FIFs in designing improved
fairness algorithms in future.

1.3 Thesis Outline
We organize the thesis as follows. In part I, we discuss preliminaries in Chapter 2.

In part II on interpretable rule-based machine learning, we discuss an incremental

8

learning framework based on MaxSAT for learning interpretable rule-based classifiers
with higher scalability. We conclude this part by applying incremental learning
on a more expressible yet interpretable rule-based classifier in Chapter 4. In part
III on fairness in machine learning, we discuss probabilistic fairness verification
based on SSAT for classifiers represented as Boolean formulas in Chapter 5. In
Chapter 6, we accommodate feature correlations in fairness verification and discuss
a tractable verification algorithm for linear classifiers. In part IV, we combine
both interpretability and fairness in machine learning by interpreting group fairness
metrics in Chapter 7. We conclude the thesis in Chapter 8.

9

Chapter 2

Preliminaries
We represent sets/vectors by bold letters, and the corresponding distributions by

calligraphic letters. We express random variables in uppercase, and the valuation or
an assignment of a random variable in lowercase. For example, X = {Xi} is a set of
random variables. The distribution of a random variable is X ∈ X and its valuation
is X = x.

2.1 Formal Methods

2.1.1 Propositional Satisfiability (SAT)

Let φ be a Boolean formula defined over a set of Boolean variables B =
{B1, B2, . . . , Bm}. A literal V is a variable B or its complement ¬B, and a clause
C is a disjunction (∨) or a conjunction (∧) of literals.1 φ is in Conjunctive Normal
Form (CNF) if φ ,

∧
iCi is a conjunction of clauses where each clause Ci ,

∨
j Vj

is a disjunction of literals. In contrast, φ is in Disjunctive Normal Form (DNF) if
φ ,

∨
iCi is a disjunction of clauses where each clause Ci ,

∧
j Vj is a conjunction

of literals. We use σ to denote an assignment of variables in B where σ(Bi) ∈ {true,
false}. A satisfying assignment σ∗ of φ is an assignment that evaluates φ to true
and is denoted by σ∗ |= φ. The propositional satisfiability (SAT) problem finds a
satisfying assignment σ∗ to a CNF formula φ such that ∀i, σ∗ |= Ci, wherein σ∗ |= Ci

if and only if ∃Vj ∈ Ci, σ∗(Vj) = true. Informally, σ∗ satisfies at least one literal in
each clause of a CNF.

1While term is reserved to denote disjunction of literals, we use clause for both disjunction
and conjunction.

10

2.1.2 Relaxation of Logical Formulas

A hard-OR or a soft-AND clause is a tuple (C, η) with an extra parameter η, where
η is the threshold on the literals in C. Let 1[true] = 1 and 1[false] = 0. Motivated
by Boolean cardinality constraints, we introduce relaxed-CNF formulas, where in
addition to φ, we have two more parameters ηc and ηl. We say that (φ, ηc, ηl) is in
relaxed-CNF and σ∗ is its satisfying assignment if and only if σ∗ |= (φ, ηc, ηl) whenever∑k
i=1 1[σ∗ |= (Ci, ηl)] ≥ ηc, where σ∗ |= (Ci, ηl) if and only if ∑V ∈Ci

1[σ∗ |= V] ≥ ηl.
Informally, σ∗ satisfies a clause (Ci, ηl) if at least ηl literals in Ci are set to true by
σ∗ and σ∗ satisfies (φ, ηc, ηl) if at least ηc clauses out of all {(Ci, ηl)}ki=1 clauses are
true.

Theorem 1 ([19]). Let (C, η) be a clause in a relaxed-CNF where C has m literals
and η ∈ {1, . . . ,m} is the threshold on literals. An equivalent compact encoding
of (C, η) into a CNF formula φ = ∧

iCi requires
(

m
m−η+1

)
clauses where each clause

is distinct and has m − η + 1 literals of (C, η). Therefore, the total number of
literals in φ is (m− η + 1)

(
m

m−η+1

)
= m (equal succinctness) when η = 1, otherwise

(m− η + 1)
(

m
m−η+1

)
> m (exponential succinctness).

2.1.3 Inner Product

In the thesis, we use true as 1 and false as 0 interchangeably. Between two
vectors U and V of the same length defined over Boolean variables or constants
(such as 0 and 1), we define U ◦ V to refer to their inner product. Formally,
U ◦ V ,

∨
i(Ui ∧ Vi) is a disjunction of element-wise conjunction where Ui and

Vi denote the ith variable/constant of U and V, respectively. In this context, the
conjunction “∧” between a variable and a constant follows the standard interpretation:
B ∧ 0 = 0 and B ∧ 1 = B.

For example, let us consider a vector of variables U = [U1, U2, U3] and a vector of
constants of the same length v = [0, 1, 1]. Then, U◦v = U2∨U3. Applying numerical
interpretation, the inner product can also be expressed as U◦V ,

∑
i(Ui ·Vi). Hence,

for the running example U = [U1, U2, U3] and v = [0, 1, 1], we derive U ◦v = u2 +u3.
In the thesis, we use Boolean interpretation of the inner product for learning CNF

11

classification rules in Chapter 3 and numerical interpretation for learning relaxed-
CNF classification rules in Chapter 4.

2.1.4 Maximum Satisfiability (MaxSAT)

The MaxSAT problem is an optimization analog to the satisfiability (SAT)
problem, which is complete for the class FPNP. Although the MaxSAT problem is
NP-hard, dramatic progress has been made in designing solvers that can handle large-
scale problems arising in practice. This has encouraged researchers to reduce several
optimization problems into MaxSAT such as optimal planning [154], automotive
configuration [184], group-testing [35], data analysis in machine learning [20], and
automatic test pattern generation for cancer therapy [105].

The MaxSAT problem finds an optimal assignment satisfying the maximum
number of clauses in a CNF. In interpretable machine learning, we consider a weighted
variant of the MaxSAT problem—more specifically, a weighted-partial MaxSAT
problem—that optimizes over a set of hard and soft constraints in the form of a
weighted-CNF formula. In a weighted-CNF formula, a weight W (Ci) ∈ R+ ∪ {∞}
is defined over each clause Ci, wherein Ci is called a hard clause if W (Ci) = ∞,
and Ci is a soft clause, otherwise. To avoid notational clutter, we overload W (·) to
denote the weight of an assignment σ. In particular, we define W (σ) as the sum of
the weights of unsatisfied clauses in a CNF, formally,

W (σ) =
∑

i|σ 6|=Ci

W (Ci) .

Given a weighted-CNF formula φ ,
∨
iCi with weight W (Ci), the weighted-

partial MaxSAT problems finds an optimal assignment σ∗ that achieves the minimum
weight. Formally, σ∗ = MaxSAT(φ,W (·)) if ∀σ 6= σ∗,W (σ∗) ≤ W (σ). The optimal
weight of the MaxSAT problem W (σ∗) is infinity (∞) when at least one hard clause
becomes unsatisfied. Therefore, the weighted-partial MaxSAT problem finds σ∗

that satisfies all hard clauses2 and as many soft clauses as possible such that the
total weight of unsatisfied soft clauses is minimum. In Chapter 3, we reduce the
classification problem to the solution of a weighted-partial MaxSAT problem. The
knowledge of the inner workings of MaxSAT solvers is not required for this chapter.

2In our formulation, we assume that there is a satisfying assignment to a CNF formula
containing all hard clauses.

12

2.1.5 Stochastic Boolean Satisfiability (SSAT)

Stochastic Boolean satisfiability (SSAT) was originally introduced by [134]
to model games against nature. SSAT is a conceptual framework that has been
employed to capture several fundamental problems in artificial intelligence such as
the computation of maximum a posteriori (MAP) hypothesis [56], propositional
probabilistic planning [113], and circuit verification [97].

SSAT problem [106] is a counting analog of the SAT problem concerning with the
probability of satisfaction of the formula. SSAT problem computes the probability
of satisfaction of a CNF formula φ defined on the ordered set of quantified Boolean
variables B. An SSAT formula is of the form

Φ = Q1B1, . . . , QmBm, φ, (2.1)

where Qi ∈ {∃,∀,

Rpi} is either of the existential (∃), universal (∀), or randomized
(Rpi) quantifiers on Bi and φ is a quantifier-free CNF formula. In case of a randomized
quantifier Rpi , pi , Pr[Bi = 1] ∈ [0, 1] is the probability of Bi being assigned to 1.
In the SSAT formula Φ, the quantifier part Q1B1, . . . , QmBm is known as the prefix
of the formula φ. Let B be the outermost variable in the prefix. The semantics of
SSAT formulas are defined recursively in the following.

1. Pr[true] = 1, Pr[false] = 0,

2. Pr[Φ] = maxB{Pr[Φ|B],Pr[Φ|¬B]} if B is existentially quantified (∃),

3. Pr[Φ] = minB{Pr[Φ|B],Pr[Φ|¬B]} if B is universally quantified (∀),

4. Pr[Φ] = pPr[Φ|B] + (1− p) Pr[Φ|¬B] if B is randomized quantified (Rp) with
probability p of being true,

where Φ|B and Φ|¬B denote the SSAT formulas derived by eliminating the
outermost quantifier of B by substituting the value of B in the CNF φ with 1 and
0, respectively. In this thesis, we focus on two specific types of SSAT formulas:
random-exist (RE) SSAT and exist-random (ER) SSAT. In the ER-SSAT (resp.
RE-SSAT) formula, all existentially (resp. randomized) quantified variables are
followed by randomized (resp. existentially) quantified variables in the prefix.

13

Remark. The decision problem of ER-SSAT is NPPP whereas RE-SSAT problem is
PPNP-complete [106].

The problem of SSAT and its variants have been pursued by theoreticians and
practitioners for over three decades [114, 56, 73]. We refer the reader to [98, 99]
for a detailed survey. It is worth remarking that the past decade has witnessed a
significant performance improvements of SSAT solving, thanks to the close integration
of techniques from SAT solving with advances in weighted model counting [162, 31,
30].

2.1.6 Stochastic Subset Sum Problem

Let B , {Bi}|B|i=1 be a set of Boolean variables and Wi ∈ Z be the weight of Bi.
Given a constraint of the form ∑|B|

i=1 WiBi = τ , for a constant threshold τ ∈ Z, the
subset-sum problem seeks to compute an assignment B ∈ {0, 1}|B| such that the
constraint evaluates to true when B is substituted with b. Subset sum problem
is known to be a NP-complete problem and well-studied in theoretical computer
science [87]. The counting version of the subset-sum problem counts all b’s for which
the above constraint holds. In this thesis, we consider the constraint ∑|B|i=1 WiBi ≥ τ

where variables Bi’s are stochastic. While the counting problem of ∑|B|i=1 WiBi = τ is
NP-hard to approximate, there is a FPRAS solution for approximately counting the
solutions of ∑|B|i=1 WiBi ≥ τ [48]. We, in particular, are interested in computing the
probability Pr[∑|B|i=1 WiBi ≥ τ], referred to as stochastic subset-sum problem (S3P).
Details of S3P are in Chapter 6.1.1.

2.2 Interpretable Machine Learning
We consider a binary classification problem where the dataset D is a collection

of n samples {(x(i), y(i))}ni=1 generated from an underlying distribution D. Here,
the feature valuation vector x = [x1, . . . , xm] ∈ {0, 1}m is a vector of m Boolean
features with y ∈ {0, 1} being the binary class label. Thus, (x, y) is called a positive
sample if y = 1, and a negative sample otherwise. We use (X, Y) to denote the
random variables corresponding to (x, y). Hence, each feature Xj ∈ X is sampled
from a Bernoulli distribution Xj , and D = ∏m

j=1Xj is the product distribution of all

14

features.

2.2.1 Rule-based Classification

A classifier R : X→ Ŷ ∈ {0, 1} is a function that takes a feature vector as input
and outputs the predicted class label Ŷ . In a rule-based classifier such as a CNF
formula, we view R as a propositional formula defined over Boolean features X such
that, if R becomes true for an input, the prediction Ŷ = 1 and Ŷ = 0, otherwise.
The goal is to design R not only to approximate the training data, but also to
generalize to unseen samples arising from the same distribution. Additionally, we
prefer to learn a sparse R in order to favor interpretability. We define the structural
complexity of R, referred to as rule size, in terms of the number of literals it contains.
Let clause(R, i) denote the ith clause of R and |clause(R, i)| be the number of literals
in clause(R, i). Thus, the size of the classifier is |R| = Σi|clause(R, i)|, which is the
sum of literals in all clauses in R.

Example 2.2.1. Let R , (X1 ∨X3) ∧ (¬X2 ∨X3) be a CNF classifier defined over
three Boolean features [X1, X2, X3]. For an input [0, 1, 1], the prediction of R is 1,
whereas for an input [1, 1, 0], the prediction is 0 because R is true and false in these
two cases, respectively. Moreover, |R| = 2 + 2 = 4 is the size of R.

2.2.2 Decision Lists

A decision list is a rule-based classifier consisting of “if-then-else” rules. Formally,
a decision list [153] is an ordered list RL pairs (C1, V1), . . . , (Ck, Vk) where the rule
Ci is a conjunction of literals (alternately, a single clause in a DNF formula) and
Vi ∈ {0, 1} is a Boolean class label3. Additionally, the last clause Ck , true, thereby
Vk is the default class. A decision list is defined as a classifier with the following
interpretation: for an input feature vector x, RL(x) is equal to Vi where i is the
least index such that the feature vector satisfies the rule, x |= Ci. Since the last
clause is true, RL(x) always exists. Intuitively, whichever clause (starting from the
first) in RL is satisfied for an input, the associated class-label is considered as its
prediction.

3In a more practical setting, Vi ∈ {0, . . . , N} can be multi-class for N ≥ 1.

15

2.2.3 Decision sets

A decision set is a set of independent “if-then” rules. Formally, a decision set RS

is a set of pairs {(C1, V1), . . . , (Ck−1, Vk−1)} and a default pair (Ck, Vk), where Ci
is—similar to a decision list—a conjunction of literals and Vi ∈ {0, 1} is a Boolean
class label. In addition, the last clause Ck , true and Vk is the default class. For a
decision set, if an input x satisfies one clause, say Ci, then the prediction is Vi. If x
satisfies no clause, then the prediction is the default class Vk. Finally, if x satisfies
≥ 2 clauses, x is assigned a class using a tie-breaking [93].

2.3 Fairness in Machine Learning
In this section, we discuss preliminaries in fairness in machine learning, followed

by methods to verify fairness and interpret unfairness.

2.3.1 Dataset and Distribution

In the fairness literature, features are categorized into two types: non-sensitive
and sensitive features. Hence, we consider a dataset D as a collection of n triples
{(x(i), a(i), y(i))}ni=1 generated from an underlying distribution D. The feature vector
z(i) , (x(i), a(i)) is a concatenation of non-sensitive features x(i) and sensitive features
a(i). Each non-sensitive data point x(i) consists of m1 features [x(i)

1 , . . . , x
(i)
m1] ∈ Rm1 .

Each sensitive data point a(i) consists of m2 categorical features [a(i)
1 , . . . , a

(i)
m2] ∈ Nm2 .

Thus, the cardinality of feature vector z(i) is denoted by m, formally |z(i)| , m =
m1 +m2. The binary class corresponding to (x(i), a(i)) is y(i) ∈ {0, 1}. We refer to
y(i) as the true class.

We denote the random variables corresponding to (z,x, a, y) with (Z,X,A, Y).
Each non-sensitive feature Xi ∈ X is sampled from a continuous probability distri-
bution Xi, and each categorical sensitive feature Aj ∈ A is sampled from a discrete
probability distribution Aj. Thus, D is the product distribution of all features,
D ,

∏m1
i=1Xi

∏m2
j=1Aj. For sensitive features, a valuation vector a = [a1, .., am2] is

called a compound sensitive group. For example, consider A = [race, sex] where race
∈ {Asian, Color, White} and sex ∈ {female, male}. Thus a = [Asian, female] is a
compound sensitive group. We represent a binary classifier trained on the dataset D

16

asM : (X,A)→ Ŷ . Here, Ŷ ∈ {0, 1} is the class predicted for (X,A). Given this
setup, we discuss different fairness metrics to compute the bias in the prediction of
a classifier [54, 69, 127].

2.3.2 Fairness Metrics

A classifierM that solely optimizes accuracy, i.e. the average number of times
Ŷ = Y , may discriminate certain compound sensitive groups over others [34]. In
the following, we describe two well-known fairness definitions: group fairness and
causal fairness. To this end, we denote f(M,D) to quantify the fairness of the
classifierM given the distribution of features D. Alternatively, a fairness metric
can be computed on a finite dataset instead of on the distribution. In that case, we
use the notation f(M,D), which is the bias of the classifierM on a dataset D.

Statistical Parity (SP). Statistical parity belongs to independence measuring
group fairness metrics, where the prediction Ŷ is statistically independent of sensitive
features A [54]. The statistical parity of a classifier is measured as

fSP(M,D) , max
a

Pr[Ŷ = 1|A = a]−min
a

Pr[Ŷ = 1|A = a],

which is the difference between the maximum and minimum conditional probability
of positive prediction the classifier for different sensitive groups.

Disparate impact (DI). Disparate impact also belongs to independence measuring
group fairness metrics. Disparate impact measures the ratio between the minimum
and the maximum conditional probability of positive prediction of the classifier over
all sensitive groups, and prescribe the ratio to be close to 1 [54]. Formally, the
disparate impact of a classifier is

fDI(M,D) , mina Pr[Ŷ = 1|A = a]
maxa Pr[Ŷ = 1|A = a]

.

Equalized Odds (EO). Separation measuring group fairness metrics such as
equalized odds [69] constrain that the predicted class Ŷ is independent of A given
the true class Y . Formally, for Y ∈ {0, 1}, equalized odds is defined as

fEO(M,D) , max
y

(
max

a
Pr[Ŷ = 1 | A = a, Y = y]−min

a
Pr[Ŷ = 1 | A = a, Y = y]

)
.

17

Equalized odds intuitively implies the maximum statistical parity conditioned
on Y .

Predictive Parity (PP). Sufficiency measuring group fairness metrics such as
Predictive Parity (PP) constrain that the ground class Y is independent of A given
the prediction Ŷ . Formally,

fPP(M,D) , max
y

(
max

a
Pr[Y = 1 | A = a, Ŷ = y]−min

a
Pr[Y = 1 | A = a, Ŷ = y]

)
.

Path-specific Causal Fairness (PCF). Let amax , arg maxa Pr[Ŷ = 1|A = a].
We consider mediator features Z ⊆ X sampled from the conditional distribution
Z|A=amax . This emulates the fact that mediator variables have the same sensitive
features amax. To this end, the path-specific causal fairness, abbreviated as PCF, of
a classifier is

fPCF(M,D) , max
a

Pr[Ŷ = 1|A = a,Z]−min
a

Pr[Ŷ = 1|A = a,Z].

Therefore, path-specific causal fairness constrains that the prediction Ŷ is not
directly dependent of sensitive features A while A may indirectly affects Ŷ only
through mediator features Z. Hence, path-specific causal fairness is a variation of
counterfactual fairness and causal fairness without mediator features [15].

Example 2.3.1. Following [15], we consider a classifier that decides the hiring of
employees based on three features: gender (sensitive), years of experience (non-
sensitive), and college-participation (mediator). It is practical to consider that
gender ∈ {male, female} can affect the college-participation of individuals, and all
three features are determining factors for the hiring process. Let ‘male’ be the most
favored group by the classifier, for instance. Path-specific causal fairness ensures
that a female candidate should be given a job offer with similar probability as a
male candidate. She, however, went to (participated in) college as if she were a male
candidate while other non-mediator features such as ‘years of experience’ are the
same. Therefore, path-specific causal fairness measures the effect of gender on job
offer, but ignores the effect of gender on whether candidates went to college.

18

Fairness Verification. We verify the fairness of a classifier by comparing f(M,D)
with a fairness threshold, denoted by ε ∈ [0, 1], that quantifies the desired level
of fairness. In particular, a classifier is ε-fair with respect to statistical parity,
equalized odds, predictive parity, and path-specific causal fairness if and only if
f(M,D) ≤ ε. In contrast, a classifier achieves (1− ε)-disparate impact if and only
if f(M,D) ≥ 1− ε. In all above fairness metrics, a lower value of ε refers to higher
fairness of the classifier.

2.4 Bayesian Network
In general, a Probabilistic Graphical Model [88], and specifically a Bayesian

network [137, 32], encodes the dependencies and conditional independence between a
set of random variables. In fairness verification with correlated features, we leverage
an access to a Bayesian network on sensitive and non-sensitive features X ∪A that
represents the joint distribution on them. A Bayesian network is denoted by a pair
(G, θ), where G , (V,E) is a DAG (Directed Acyclic Graph), and θ is a set of
parameters encoding the conditional probabilities induced by the joint distribution
under investigation. Each vertex Vi ∈ V corresponds to a random variable. Edges
E ∈ V × V imply conditional dependencies among variables. For each variable
Vi ∈ V, let Pa(Vi) ⊆ V \ {Vi} denote the set of parents of Vi. Given Pa(Vi) and
parameters θ, Vi is independent of its other non-descendant variables in G. Thus, for
the assignment vi of Vi and u of Pa(Vi), the aforementioned semantics of a Bayesian
network encodes the joint distribution of V as:

Pr[V1 = v1, . . . ,V|V| = v|V|] =
|V|∏
i=1

Pr[Vi = vi|Pa(Vi) = u; θ]. (2.2)

The complexity C(G) of a Bayesian network (G, θ) with discrete random variables
V is defined as the number of independent parameters used to define the probability
distribution of V [125]. Let Card(V) denote the number of distinct values that a
random variable V can take. As such, for each conditional probability Pr[Vi =
vi|Pa(Vi) = u; θ], we need Card(Pa(Vi))(Card(Vi)−1) independent parameters. Thus,
the total complexity of a Bayesian network is:

19

C(G) =
|V|∑
i=1

Card(Pa(Vi))(Card(Vi)− 1) (2.3)

2.5 Global Sensitivity Analysis (GSA): Variance
Decomposition

Global sensitivity analysis is an active field of research that studies how the global
uncertainty in the output of a function can be attributed to the different sources
of uncertainties in the input variables [161]. Sensitivity analysis is an essential
component for quality assurance and impact assessment of models in EU [52],
USA [132], and research communities [160]. Variance-based sensitivity analysis is
a form of global sensitivity analysis, where variance is considered as the measure
of uncertainty [172, 173]. To illustrate, let us consider a real-valued function g(Z),
where Z is a vector of m input variables {Z1, . . . , Zm}. Now, we decompose g(Z)
among the subsets of inputs, such that:

g(Z) = g0 +
m∑
i=1

g{i}(Zi) +
m∑
i<j

g{i,j}(Zi, Zj) + · · ·+ g{1,2,...,m}(Z1, Z2, . . . , Zm)

= g0 +
∑

S⊆[m]
gS(ZS) (2.4)

The standard condition of this decomposition is the orthogonality of each term in
the right-hand side of Eq. (2.4) [172]. In this decomposition, g0 is a constant, g{i}
is a function of Zi, g{i,j} is a function of Zi and Zj, and so on. Adhering to the
set-based notations, we denote by gS a function of a non-empty subset of variables
ZS , {Zi | i ∈ S} ⊆ Z, where S = {Si | 1 ≤ |Si| ≤ m} ⊆ [m] is a non-empty subset
of indices with [m] , {1, 2, . . . ,m}. Here, |S| = 1 quantifies an individual variable’s
effect while |S| > 1 quantifies the higher-order intersectional effect of variables.

Considering g as square integrable, we obtain the decomposition of the variance
of g(Z) expressed as the sum of variances of gS’s [172].

Var[g(Z)] =
m∑
i=1

V{i} +
m∑
i<j

V{i,j} + · · ·+ V{1,2...,m} =
∑

S⊆[m1]
VS (2.5)

where V{i} is the variance of g{i}, V{i,j} is the variance of g{i,j} and so on. Formally,

VS , VarZS

[
EZ\ZS [g(Z) | ZS]

]
−
∑

S′⊂S
VS′ . (2.6)

20

Here, S′ denotes all the non-empty and ordered proper subsets of S. Thus, VS is the
variance w.r.t. ZS by subtracting the variances of all non-empty proper subsets of
ZS. As a result, Eq. (2.5) demonstrates how the variance of g(Z) can be decomposed
into terms attributable to each input feature, as well as the intersectional effects
among them. Conversely, together all terms sum to the total variance of the model
output.

21

Part II

Interpretable Rule-based Machine
Learning

22

We discuss an incremental learning framework based on MaxSAT for interpretable
classification rules in Chapter 3. This allows us to scale up classification on large
datasets. In Chapter 4, we improve the expressiveness of rule-based classifiers and
apply incremental solving for an efficient learning.

23

Chapter 3

Scalability via Incremental Learn-
ing

We discuss an efficient learning framework for interpretable rule-based classifiers
with a particular emphasis on the scalability in learning. In rule-based classifiers,
rules governing the prediction are explicit (by design) in contrast to black-box
classifiers [157]. In particular, we study classifiers expressed as Boolean formulas,
wherein we define interpretability in terms of the number of Boolean literals that
the formula contains. Here, we illustrate an interpretable classifier that decides if a
tumor cell is malignant or benign based on different features of tumors.

A tumor is malignant if
[(compactness SE < 0.1) OR ¬(0.1 ≤ concave points < 0.2)] AND
[¬(0.2 ≤ area < 0.3) OR ¬(0.1 ≤ largest symmetry < 0.2)]

Example 3.0.1. We illustrate an interpretable classification rule in CNF for clas-
sifying a tumor cell. We consider WDBC (Wisconsin Diagnostic Breast Cancer)
dataset [2] to learn a CNF formula with two clauses and four Boolean literals. In
the formula, clauses are connected by Boolean ‘AND’, where each clause contains
literals connected by Boolean ‘OR’. Informally, a tumor cell is malignant if at least
one literal in each clause becomes true.

The problem of learning rule-based classifiers is known to be computationally
intractable. The earliest tractable approaches for classifiers such as decision trees and
decision lists relied on heuristically chosen objective functions and greedy algorithmic
techniques [36, 37, 146]. In these approaches, the size of rules is controlled by
early stopping, ad-hoc rule pruning, etc. In recent approaches, the interpretable

24

classification problem is reduced to an optimization problem, where the accuracy and
the sparsity of rules are optimized jointly [93, 129]. Different optimization solvers
such as linear programming [116], sub-modular optimizations [93], and Bayesian
optimizations [101] are then deployed to find the best classifier with maximum
accuracy and minimum rule size. In our study, we study an alternate optimization
approach that fits particularly well to rule-learning problems. Particularly, we study
and improve a maximum satisfiability (MaxSAT) solution for learning interpretable
rule-based classifiers. Building on MaxSAT, [115] considers a learning framework to
jointly optimize the accuracy and the size of classification rules. The said approach
constructs and solves a MaxSAT query of O(kn) size (number of clauses) to learn a
k-clause CNF formula on a dataset containing n samples (Chapter 3.3.2). Naturally,
the naïve formulation cannot scale to large values of n and k. To scale learning to
large datasets, we discuss an incremental learning technique along with the MaxSAT
formulation.

Contributions. The contribution of this chapter is a MaxSAT-based formulation,
called IMLI (Incremental MaxSAT-based Learning of Interpretable classification
rules), for learning interpretable classification rules expressible in propositional
logic. For the simplicity of exposition, our initial focus is on learning classifiers
expressible in CNF formulas; we later discuss how the CNF learning formulation can
be extended to popular interpretable classifiers such as decision lists and decision
sets. Our incremental learning is an integration of mini-batch learning and iterative
rule-learning, which are studied separately in classical learning problems. In the
presented incremental approach, IMLI learns a k-clause CNF formula using an
iterative separate-and-conquer algorithm, where in each iteration, a single clause
is learned by covering a part of the training data (Chapter 3.4). Furthermore, to
efficiently learn a single clause in a CNF, IMLI relies on mini-batch learning, where
it solves a sequence of smaller MaxSAT queries corresponding to each mini-batch.

In our experimental evaluations, IMLI demonstrates the best balance among
prediction accuracy, interpretability, and scalability in learning classification rules.
In particular, IMLI achieves competitive prediction accuracy and interpretability
w.r.t. state-of-the-art interpretable classifiers. Besides, IMLI achieves impressive
scalability by classifying datasets even with 1 million samples, wherein existing

25

classifiers, including those of the non-interpretable ones, either fail to scale or achieve
poor prediction accuracy. Finally, as an application, we deploy IMLI in learning
interpretable classifiers such as decision lists and decision sets.

We organize the rest of the chapter as follows. We discuss related literature in
Chapter 3.1. In Chapter 3.2, we formally define interpretable rule-based classification
problem and discuss a MaxSAT-based solution proposed by [115] in Chapter 3.3.
In Chapter 3.4, we discuss the key technical contribution of this chapter, IMLI, an
improved MaxSAT-based learning formulation based on incremental solving. In
Chapter 3.5, we apply IMLI in learning different interpretable classifiers. We then
discuss our experimental results in Chapter 3.6 and conclude in Chapter 3.7.

3.1 Related Work
The progress in designing interpretable rule-based classifiers finds its root in the

development of decision trees [23, 144, 145], decision lists [153], classification rules
[38] etc. In early works, the focus was to improve the efficiency and scalability of the
model rather than designing models that are interpretable. For example, decision
rule approaches such as C4.5 rules [146], CN2 [36], RIPPER [38], and SLIPPER [37]
rely on heuristic-based branch pruning and ad-hoc local criteria e.g., maximizing
information gain, coverage, etc.

Recently, several optimization frameworks have been proposed for interpretable
classification, where both accuracy and rule size are optimized during training. For
example, [116] proposed exact learning of rule-based classifiers based on Boolean
compressed sensing using a linear programming formulation. [175] presented two-level
Boolean rules, where the trade-off between classification accuracy and interpretability
is studied. In their work, the Hamming loss is used to characterize prediction
accuracy, and sparsity is used to characterize the interpretability of rules. [186]
proposed a Bayesian optimization framework for learning falling rule lists, which
is an ordered list of if-then rules. Other similar approaches based on Bayesian
analysis for learning classification rules are [101, 188]. Building on custom discrete
optimization techniques, [6] proposed an optimal learning technique for decision
lists using a branch-and-bound algorithm. In a separate study, [93] highlighted
the importance of decision sets over decision lists in terms of interpretability and

26

considered a sub-modular optimization problem for learning a near-optimal solution
for decision sets. Our approach for interpretable classification, however, relies on
the improvement in formal methods over the decades, particularly the efficient
CDCL-based solution for satisfiability (SAT) problems [168].

Formal methods, particularly SAT and its variants, have been deployed in
interpretable classification in recent years. In the context of learning decision trees,
SAT and MaxSAT-based solutions are proposed by [5, 81, 129, 167]. In addition,
researchers have applied SAT for learning explainable decision sets [79, 75, 164,
193]. In most cases, SAT/MaxSAT solutions are not sufficient in solving large-scale
classification tasks because of the NP-hardness of the underlying problem. This
observation motivates us in combining MaxSAT with more practical algorithms such
as incremental learning.

Incremental learning has been studied in improving the scalability of learning
problems, where data is processed in parts and results are combined to use lower
computation overhead. In case of non-interpretable classifiers such as SVM, several
solutions adopting incremental learning are available [177, 159]. For example, [29]
proposed an online recursive algorithm for SVM that learns one support-vector at
a time. Based on radial basis kernel function, [149] proposed a local incremental
learning algorithm for SVM. In the context of deep neural networks, stochastic
gradient descent is a well-known convex optimization technique—a variant of which
includes computing the gradient on mini-batches [71, 103, 120]. Federated learning,
on the other hand, decentralizes training on multiple local nodes based on local
data samples with only exchanging learned parameters to construct a global model
in a central node [89, 90]. Another notable technique is Lagrangian relaxation
that decomposes the original problem into several sub-problems, assigns Lagrangian
multipliers to make sure that sub-problems agree, and iterates by solving sub-
problems and adjusting weights based on disagreements [55, 83, 100]. To the best
of our knowledge, our method is the first method that unifies incremental learning
with MaxSAT based formulation to improve the scalability of learning rule-based
classifiers.

Classifiers that are interpretable by design can be applied to improve the explain-
ability of complex black-box machine learning classifiers. There is rich literature on
extracting decompositional and pedagogical rules from non-linear classifiers such

27

as support vector machines [12, 13, 43, 117, 130] and neural networks [10, 66, 166,
163, 201, 200]. In recent years, local model-agnostic approaches for explaining
black-box classifiers are proposed by learning surrogate simpler classifiers such as
rule-based classifiers [65, 136, 148, 152]. The core idea in local approaches is to use a
rule-learner that can classify synthetically generated neighboring samples with class
labels provided by the black-box classifier. To this end, our framework IMLI can be
directly deployed as an efficient rule-learner and can explain the inner-working of
black-box classifiers by generating interpretable rules.

3.2 Problem Formulation
We are given

1. a dataset D = {(x(i), y(i))}ni=1 of n samples, where feature vector x(i) ∈ {0, 1}m

contains m features and class label y(i) ∈ {0, 1},

2. a positive integer k ≥ 1 denoting the number of clauses to be learned in the
classification rule, and

3. a regularization parameter λ ∈ R+.

Our goal is to learn a rule-based classifier R represented as a k-clause CNF formula
separating samples of class 1 from class 0.

We learn classifiers that balance two goals: of being accurate but also inter-
pretable. Various notions of interpretability have been discussed in the context
of classification problems. A common proxy for interpretability in the context of
decision rules is the sparsity of rule. For instance, a rule involving fewer literals is
highly interpretable. In this chapter, we minimize the total number of literals in all
clauses, which motivates us to find R with minimum |R|. Let R classify all samples
correctly during training. Among all the classification rules that classify all samples
correctly, we choose the sparsest (most interpretable) such R.

min
R
|R| such that ∀i, y(i) = R(x(i))

In practical classification tasks, perfect classification is unlikely. Hence, we need to
balance interpretability with classification error. Let ED = {(x(i), y(i))|y(i) 6= R(x(i))}

28

be the set of samples in D that are misclassified byR. Therefore, we balance between
classification-accuracy and rule-sparsity and optimize the following function.1

min
R
|ED|+ λ|R| (3.1)

Higher values of λ generate a rule with a smaller rule size but of more train-
ing errors, and vice-versa. Thus, λ can be tuned to trade-off between accuracy
and interpretability for a rule-based classifier, which we experiment extensively in
Chapter 3.6.

3.3 Interpretable Classification Rule Learning via
MaxSAT

In this section, we revisit [115] by discussing a MaxSAT-based learning framework
for an interpretable rule-based classifier, particularly a CNF classifier R. We first
describe the decision variables in Chapter 3.3.1 and present the MaxSAT encoding
in Chapter 3.3.2. The MaxSAT formulation assumes binary features as input. We
conclude this section by learning R with non-binary features in Chapter 3.3.3 and
discussing more flexible interpretability constraints of R in Chapter 3.3.4.

3.3.1 Description of Variables

We initially preprocess feature vector x to account for the negation of Boolean
features while learning a classifier.2 In the preprocessing step, we negate each feature
in x to a new feature and append it to x. For example, if “age ≥ 25” is a Boolean
feature, we add another feature “age < 25” in x by negating the feature “age ≥ 25”.
Hence, in the rest of the chapter, we refer m as the modified number of features in
x. We next discuss the variables in the MaxSAT problem.

We consider two types of Boolean variables: (i) feature variables B corresponding
to input features and (ii) error variables ξ corresponding to the classification error
of samples. We define a Boolean variable Bi

j that becomes true if feature Xj appears
in the ith clause of R, thereby contributing to an increase in the rule size of R, and

1In our formulation, it is straightforward to add class-conditional weights (e.g., to penalize
false-alarms more than mis-detects), and to allow instance weights (per sample).

2This preprocessing is similarly applied in [116].

29

Bi
j is assigned false, otherwise. Moreover, we define an error variable ξl to attribute

to whether the lth sample (x(l), y(l)) is classified correctly or not. Specifically, ξl
becomes true if (x(l), y(l)) is misclassified, and becomes false otherwise. We next
discuss the MaxSAT encoding to solve the classification problem.

3.3.2 MaxSAT Encoding

We consider a partial-weighted MaxSAT formula, where we encode the objective
function in Eq. (3.1) as soft clauses and the learning constraints as hard clauses. We
next discuss the MaxSAT encoding in detail.

• Soft clauses for maximizing training accuracy: For each training sample,
we construct a soft unit3 clause ¬ξl to account for a penalty for misclassification.
Since the penalty for misclassification of a sample is 1 in Eq. (3.1), the weight
of this soft clause is also 1.

El := ¬ξl; W (El) = 1 (3.2)

Intuitively, if a sample is misclassified, the associated error variable becomes
true, thereby dissatisfying the soft clause El.

• Soft clauses for minimizing rule-sparsity: To favor rule-sparsity, we learn
a classifier with as few literals as possible. Hence, for each feature variable Bi

j ,
we construct a unit clause as ¬Bi

j . Similar to training accuracy, the weight for
this clause is derived as λ from Eq. (3.1).

Sij := ¬Bi
j; W

(
Sij
)

= λ (3.3)

• Hard clauses for encoding constraints: In a MaxSAT problem, constraints
that must be satisfied are encoded as hard clauses. In rule-based classification,
we have a learning constraint that, if the error variable is false, the associated
sample must be correctly classified, and vice-versa. Let Bi = {Bi

j | j ∈
{1, . . . ,m}} be a vector of feature variables corresponding to the ith clause in
R. Then, we define the following hard clause.

3A unit clause has a single literal.

30

Hl := ¬ξl →
(
y(l) ↔

k∧
i=1

x(l) ◦Bi

)
; W (Hl) =∞ (3.4)

In the hard clause, ∧ki=1 x(l) ◦Bi is a CNF formula including variables Bi
j for

which the associated feature-value is 1 in x(l). Since y(l) ∈ {0, 1} is a constant,
the constraint to the right of the implication “→” is either ∧ki=1 x(l) ◦Bi or its
complement. Therefore, the hard clause enforces that if the sample is correctly
classified (using ¬ξl), either

∧k
i=1 x(l) ◦Bi or its complement is true depending

on the class-label of the sample. We highlight that the single-implication
“→” in the hard clause Hl acts as a double-implication “↔” due to the soft
clause El. Because, according to the definition of “→”, the left constraint ¬ξl
can be false while the right constraint of “→” is true. This, however, incurs
unnecessarily dissatisfying the soft clause El, which is a sub-optimal solution
and hence this solution is not returned by the MaxSAT solver.

We next discuss the translation of soft and hard clauses into a CNF formula,
which can be invoked by any MaxSAT solver.

Translating El, S
i
j, Hl to a CNF formula. The soft clauses El and Sij are

unit clauses and hence, no translation is required for them. In the hard clause,
when y(l) = 1, the simplification is Hl := ¬ξl →

∧k
i=1 x(l) ◦ Bi. In this case,

we apply the equivalence rule in propositional logic (A → B) ≡ (¬A ∨ B) to
encode Hl into CNF. In contrast, when yi = 0, we simplify the hard clause as
Hl := ¬ξl → ¬(∧ki=1 x(l) ◦Bi)⇒ ¬ξl →

∨k
i=1 ¬(x(l) ◦Bi). Since x(l) ◦Bi constitutes

a disjunction of literals, we apply Tseytin transformation to encode ¬(x(l) ◦Bi) into
CNF. More specifically, we introduce an auxiliary variable zl,i corresponding to the
clause ¬(x(l) ◦Bi). Formally, we replace Hl := ¬ξl →

∨k
i=1 ¬(x(l) ◦Bi) with

∧k
i=0 Hl,i,

where Hl,0 := (¬ξl →
∨k
i=1 zl,i) and Hl,i := zl,i → ¬(x(l) ◦ Bi) for i = {1, . . . , k}.

Finally, we apply the equivalence of (A→ B) ≡ (¬A ∨B) on Hl,i to translate them
into CNF. For either value of y(l), the weight of each translated hard clause in the
CNF formula is ∞.

Once we translate all soft and hard clauses into CNF, the MaxSAT query Q is

31

the conjunction of all clauses.

Q :=
n∧
l=1

El ∧
i=k,j=m∧
i=1,j=1

Sij ∧
n∧
l=1

Hl

Any off-the-shelf MaxSAT solver can output an optimal assignment σ∗ of the
MaxSAT query (Q,W (·)). We extract σ∗ to construct the classifier R and compute
training errors as follows.

Construction 2. Let σ∗ = MaxSAT(Q,W (·)). Then Xj ∈ clause(R, i) if and only
if σ∗(Bi

j) = 1. Additionally, (x(l), y(l)) is misclassified if and only if σ∗(ξl) = 1.

Complexity of the MaxSAT query. We analyze the complexity of the MaxSAT
query in terms of the number of Boolean variables and clauses in the CNF formula
Q.

Proposition 3. To learn a k-clause CNF classifier for a dataset of n samples over
m boolean features, the MaxSAT query Q defines km+ n Boolean variables. Let
nneg be the number of negative samples in the training dataset. Then the number
of auxiliary variables in Q is knneg.

Proposition 4. The MaxSAT query Q has km+ n unit clauses corresponding to
the constraints El and Sij . For each positive sample, the hard clause Hl is translated
into k clauses. For each negative sample, the CNF translation requires at most
km+ 1 clauses. Let npos and nneg be the number of positive and negative samples
in the training set. Therefore, the number of clauses in the MaxSAT Query Q is
km+ n+ knpos + (km+ 1)nneg ≈ O(kmn) when npos = nneg = n

2 .

Example 3.3.1. MaxSAT Encoding.
We illustrate the MaxSAT encoding for a toy example consisting of four samples

and two binary features. Our goal is to learn a two clause CNF classifier that can

32

approximate the training data.

Dorig =

X1 X2 Y

0 0 1
0 1 0
1 0 0
1 1 1

=⇒ D =

X1 ¬X1 X2 ¬X2 Y

0 1 0 1 1
0 1 1 0 0
1 0 0 1 0
1 0 1 0 1

In the preprocessing step, we negate the features {X1, X2} in Dorig and add comple-
mented features {¬X1,¬X2} in D. In the MaxSAT encoding, we define 8 feature
variables (4 features × 2 clauses in the classifier) and 4 error variables. For example,
for feature X2, introduced feature variables are {B1

3 , B
2
3} and for feature ¬X2, in-

troduced variables are {B1
4 , B

2
4}. For four samples, error variables are {ξ1, ξ2, ξ3, ξ4}.

We next show the soft and hard clauses in the MaxSAT encoding

E1 := (¬ξ1); E2 := (¬ξ2); E3 := (¬ξ3); E4 := (¬ξ4)

S1
1 := (¬B1

1); S1
2 := (¬B1

2); S1
3 := (¬B1

3); S1
4 := (¬B1

4);

S2
1 := (¬B2

1); S2
2 := (¬B2

2); S2
3 := (¬B2

3); S2
4 := (¬B2

4);

H1 := (¬ξ1 → ((B1
2 ∨B1

4) ∧ (B2
2 ∨B2

4)));

H2 := (¬ξ2 → (¬(B1
2 ∨B1

3) ∨ ¬(B2
2 ∨B2

3)));

H3 := (¬ξ3 → (¬(B1
1 ∨B1

4) ∨ ¬(B2
1 ∨B2

4)));

H4 := (¬ξ4 → ((B1
1 ∨B1

3) ∧ (B2
1 ∨B2

3)));

In this example, we consider regularizer λ = 0.1, thereby setting the weight on
accuracy as W (Ei) = 1 and rule-sparsity weight as W

(
Sij
)

= 0.1. Intuitively, the
penalty for misclassifying a sample is 10 times than the penalty for adding a feature
in the classifier. For this MaxSAT query, the optimal solution classifies all samples
correctly by assigning four feature variables {B1

1 , B
1
4 , B

2
2 , B

2
3} to true. Therefore, by

applying Construction 2, the classifier is (X1 ∨ ¬X2) ∧ (¬X1 ∨X2).4

4The presented MaxSAT-based formulation does not learn a CNF classifier with both Xi and
¬Xi in the same clause. The reason is that a clause with both Xi and ¬Xi connected by OR (∨)
does not increase accuracy but increases rule size and hence, this is not an optimal classifier.

33

3.3.3 Learning with Non-binary Features

The presented MaxSAT encoding requires input samples to have binary features.
Therefore, we discretize datasets with categorical and continuous features into binary
features. For each continuous feature, we apply equal-width discretization that
splits the feature into a fixed number of bins. For example, consider a continuous
feature Xc ∈ [a, b]. In discretization, we split the domain [a, b] into three bins with
two split points {a′, b′} such that a < a′ < b′ < b. Therefore, the resulting three
discretized features are a ≤ Xc < a′, a′ ≤ Xc < b′, and b′ ≤ Xc ≤ b. An alternate to
this close-interval discretization is open-interval discretization, where we consider six
discretized features with each feature being compared with one threshold. In that
case, the discretized features are: Xc ≥ a,Xc ≥ a′, Xc ≥ b′, Xc < a′, Xc < b′, Xc ≤ b.
Both open-interval and close-interval discretization techniques have their use-cases
where one or the other is appropriate. For simplicity, we experiment with close-
interval discretization in this chapter.

After applying discretization on continuous features, the dataset contains cate-
gorical features only, which we convert to binary features using one-hot encoding [95].
In one-hot encoding, a Boolean vector of features is introduced with cardinality equal
to the number of distinct categories. For example, consider a categorical feature
having three categories ‘red’, ‘green’, and ‘yellow’. In one hot encoding, samples with
category-value ‘red’, ‘green’, and ‘yellow’ would be converted into binary features by
taking values 100, 010, and 001, respectively.

3.3.4 Flexible Interpretability Objectives

In interpretable classification rules, we can consider more flexible interpretability
objectives than the simplified one in Eq. (3.1). In Eq. (3.1), we prioritize all features
equally by providing the same weight to the clause Sij for all values of i and j.
In practice, users may prefer rules containing certain features. In the MaxSAT
formulation, such an extension can be achieved by modifying the weight function
and/or the definition of Sij. For example, to constrain the classifier to never include
a feature, the weight of the clause Sij := ¬Bi

j can be set to∞. In contrast, to always
include a feature, we can define Sij := Bi

j with weight ∞. In both cases, we treat Sij
as a hard clause.

34

Another use case may be to learn rules where clauses have disjoint set of features.
To this end, we consider a pseudo-Boolean constraint ∑k

i=1 B
i
j ≤ 1, which specifies

that the feature Xj appears in at-most one of the k clauses. This constraint may be
soft or hard depending on the priority in the application domain. In either case, we
convert this constraint to CNF using pseudo-Boolean to CNF translation [141]. Thus,
the MaxSAT formulation allows us to consider varied interpretability constraints
by only modifying the MaxSAT query without requiring changes in the MaxSAT
solving. Therefore, the separation between modeling and solving turns out to be the
key strength of the presented MaxSAT formulation.

3.4 Incremental Learning of Interpretable Classi-
fication Rules

To facilitate a scalable learning, we discuss the key technical contribution of this
chapter, IMLI, a an incremental learning framework of interpretable classification
rules based on MaxSAT. The complexity of the MaxSAT query in Chapter 3.3.2
increases with the number of samples n in the training dataset and the number of
clauses k in the CNF classifier. To scale on large n and k, our incremental learning
is built on two concepts: (i) mini-batch learning and (ii) iterative learning.

3.4.1 Mini-batch Learning

Our first improvement is to implement a mini-batch learning technique tailored
for rule-based classifiers. Mini-batch learning has two-fold advantages. Firstly,
instead of solving a large MaxSAT query for the whole training data, this approach
solves a sequence of smaller MaxSAT queries derived from mini-batches of smaller
size. Secondly, this approach extends to online learning, where the classifier can
be updated incrementally with new samples while also generalizing to previously
observed samples. In our context of rule-based classifiers, we consider the following
heuristic in mini-batch learning.

A Heuristic for Mini-Batch Learning. Let R′ be a classifier learned on the
previous batch. In mini-batch learning, we aim to learn a new classifier R that
can generalize to both the current batch and previously seen samples. For that, we

35

consider a soft constraint such that R does not differ much from R′ while training on
the current batch. Thus, we hypothesize that by constraining R to be syntactically
similar to R′, it is possible to generalize well; because samples in all batches originate
from the same distribution5. Since our study focuses on rule-based classifiers, we
consider the Hamming distance between two classifiers as a notion of their syntactic
dissimilarity. In the following, we define the Hamming distance between two CNF
classifiers R, R′ with the same number of clauses as follows.

dH(R,R′) =
k∑
i=1

(∑
v∈Ci

1(v 6∈ C ′i) +
∑
v∈C′

i

1(v 6∈ Ci)
)
,

where Ci and C ′i are the ith clause in R and R′, respectively and 1 is an indicator
function that returns 1 if the input is true and returns 0 otherwise. Intuitively,
dH(R′,R) calculates the total number of different literals in each (ordered) pair
of clauses in R and R′. For example, consider R = (X1 ∨ X2) ∧ (¬X1) and
R′ = (¬X1 ∨X2) ∧ (¬X1). Then dH(R,R′) = 2 + 0 = 2, because in the first clause,
the literals in {X1,¬X1} are absent in either formulas, and the second clause is
identical for both R and R′. In the following, we discuss a modified objective
function for mini-batch learning.

Objective Function. In mini-batch learning, we design an objective function to
penalize both classification errors on the current batch and the Hamming distance
between new and previous classifiers. Let Db ⊂ D be the current mini-batch, where
|Db| � |D|. The objective function in mini-batch learning is

min
R
|EDb
|+ λdH(R,R′). (3.5)

In the objective function, EDb
is the misclassified subset of samples in the current

batch Db. Unlike controlling the rule-sparsity in the non-incremental approach in
the earlier section, in Eq. (3.5), λ controls the trade-off between classification errors

5We apply Hamming distance heuristics in IMLI with the assumption that the probability
distribution of features remains same across batches. One way to account for distribution shifts is
to consider last p (> 1) batches instead of the (single) previous batch in the objective function
in mini-batch learning. For a feature variable Bi

j , we consider its majority assignment in last p
classification rules and encode as a soft clause to retain the majority assignment in the current
batch. Moreover, we can reweigh the soft clause by prioritizing assignments of Bi

j in recent batches.

36

and the syntactic differences between consecutive classifiers. Next, we discuss how
to encode the modified objective function as a MaxSAT query.

MaxSAT Encoding of Mini-batch Learning. In order to account for the
modified objective function, we only modify the soft clause Sij in the MaxSAT query
Q. In particular, we define Sij to penalize for the complemented assignment of the
feature variable Bi

j in R compared to R′.

Sij :=

Bi
j if Xj ∈ clause(R′, i)

¬Bi
j otherwise

; W
(
Sij
)

= λ

Sij is either a unit clause Bi
j or ¬Bi

j depending on whether the associated feature
Xj appears in the previous classifier R′ or not. In this encoding, the Hamming
distance of R and R′ is minimized while attaining minimum classification errors on
the current batch (using soft clause El in Eq. (3.2)) To this end, mini-batch learning
starts with an empty CNF formula as R′ without any feature, and thus Sij := ¬Bi

j

for the first batch. We next analyze the complexity of the MaxSAT encoding for
mini-batch learning.

Proposition 5. Let n′ , |Db| � |D| be the size of a mini-batch, n′neg ≤ n′ be the
number of negative samples in the batch, and m be the number of Boolean features.
According to Proposition 3, to learn a k-clause CNF classifier in mini-batch learning,
the MaxSAT encoding for each batch has km + n′ Boolean variables and kn′neg

auxiliary variables. Let n′pos = n′ − n′neg be the number of positive samples in the
batch. Then, according to Proposition 4, the number of clauses in the MaxSAT query
for each batch is km+ n′ + kn′pos + (km+ 1)n′neg ≈ O(kmn′) when n′pos = n′neg = n′

2 .

Assessing the Performance of R. Since we apply a heuristic objective in mini-
batch learning, R may be optimized for the current batch while generalizing poorly
on the full training data. To tackle this, after learning on each batch, we decide
whether to keep R or not by assessing the performance of R on the training data
and keep R if it achieves higher performance. We measure the performance of R on
the full training data D using a weighted combination of classification errors and
rule size. In particular, we compute a combined loss function loss(R) , |ED|+ λ|R|

37

on the training data D, which is indeed the value of the objective function that we
minimize in the non-incremental learning in Chapter 3.2. Additionally, we discard
the current classifier R when the loss does not decrease (loss(R) > loss(R′)).

We present the algorithm for mini-batch learning in Algorithm 1.

Algorithm 1 MaxSAT-based Mini-batch Learning
1: function MiniBatchLearning(D, λ, k)
2: R =← ∧k

i=1 false . Empty CNF formula
3: lossmax ←∞
4: for i← 1, . . . , N do . N is the total batch-count
5: Db ← GetBatch(D)
6: Q,W (·)←MaxSATEncoding(R,Db, λ, k) . Returns a

weighted-partial CNF
7: σ∗ ←MaxSAT(Q,W (·))
8: Rnew ← ConstructClassifier(σ∗)
9: loss← |ED|+ λ|Rnew| . Compute loss
10: if loss < lossmax then
11: lossmax ← loss
12: R ← Rnew

13: return R

3.4.2 Iterative Learning

We now discuss an iterative learning algorithm for rule-based classifiers. The
major advantage of iterative learning is that we solve a smaller MaxSAT query
because of learning a partial classifier in each iteration. Our iterative approach
is motivated by the set-covering algorithm—also known as separate-and-conquer
algorithm—in symbolic rule learning [57]. In this approach, the core idea is to define
the coverage of a partial classifier (for example, a clause in a CNF classifier). For
a specific definition of coverage, this algorithm separates samples covered by the
partial classifier and recursively conquers remaining samples in the training data by
learning another partial classifier until no sample remains. The final classifier is an
aggregation of all partial classifiers—the conjunction of clauses in a CNF formula,
for example.

Iterative learning is different from mini-batch learning in several aspects. In
mini-batch learning, we learn all clauses in a CNF formula together, while in iterative
learning, we learn a single clause of a CNF in each iteration. Additionally, in mini-

38

batch learning, we improve scalability by reducing the number of samples in the
training data using mini-batches, while in iterative learning, we improve scalability
by reducing the number of clauses to learn at once. Therefore, an efficient integration
of iterative learning and mini-batch learning would benefit scalability from both
worlds. In the following, we discuss this integration by first stating iterative learning
for CNF classifiers.

In iterative learning, we learn one clause of a CNF classifier in each iteration,
where the clause refers to a partial classifier. The coverage of a clause in a CNF
formula is the set of samples that do not satisfy the clause. The reason is that if
a sample does not satisfy at least one clause in a CNF formula, the prediction of
the sample by the full formula is class 0, because CNF is a conjunction of clauses.
As a result, considering covered samples in the next iteration does not change
their prediction regardless of whatever clause we learn in later iterations. To this
end, a single clause learning can be performed efficiently by applying mini-batch
learning discussed before. In Algorithm 2, we provide an algorithm for learning a
CNF classifier iteratively by leveraging mini-batch learning. This algorithm is a
double-loop algorithm, where in the outer loop we apply iterative learning and in
the inner loop, we apply mini-batch learning.

Algorithm 2 Iterative CNF Classifier Learning
1: procedure IterativeCNFLearning(X,y, λ, k)
2: R ← true . Initial formula
3: for i← 1, . . . , k and D 6= ∅ do
4: Ci ←MiniBatchLearning(D, λ, 1) . Single clause learning, k = 1
5: D′ ← Coverage(D, Ci)
6: if D′ = ∅ then . Terminating conditions
7: break
8: R ← R∧ Ci
9: D← D \D′ . Removing covered samples
10: return R

Terminating conditions. In Algorithm 2, we terminate iterative learning based
on three conditions: (i) when R contains all k clauses , (ii) the training data D is
empty (that is, no sample remains uncovered), and (iii) no new sample is covered by
the current partial classifier. Since the first two conditions are trivial, we elaborate

39

on the third condition. When clause Ci cannot cover any new sample from the
training dataset D, the next iteration will result in the same clause Ci because the
training data remains the same. In this case, we do not include clause Ci to classifier
R because of zero coverage.

3.5 Learning Other Interpretable Classifiers
In earlier sections, we discuss the learning of CNF classifiers using IMLI. IMLI

can also be applied to learning other interpretable rule-based representations. In
this section, we discuss how IMLI can be applied in learning DNF classifiers, decision
lists, and decision sets.

3.5.1 Learning DNF classifiers

For learning DNF classifiers, we leverage De Morgan’s law where complementing
a CNF formula results in a DNF formula. To learn a DNF classifier, say R′(X),
we can trivially show that Y = R′(X) ↔ ¬(Y = ¬R′(X)) for the feature vector
X. Here ¬R′(X) is a CNF formula, by definition. Thus, we learn a DNF classifier
by first complementing the class-label y(i) to ¬y(i) for each sample in the training
dataset {(x(i), y(i))}ni=1, learning a CNF classifier on {(x(i),¬y(i))}ni=1, and finally
complementing the learned classifier to DNF. For example, the CNF classifier “(Male
∨ Age < 50) ∧ (Education = Graduate ∨ Income ≥ 1500)” is complemented to
a DNF classifier as “(not Male ∧ Age ≥ 50) ∨ (Education 6= Graduate ∧ Income
≤ 1500)”.

To learn a DNF classifier incrementally, such as through mini-batch and iterative
learning, we adopt the following procedure. For learning a DNF classifier using
mini-batch learning, we first learn a CNF classifier on dataset {(x(i),¬y(i))}ni=1 and
complement the classifier to a DNF classifier at the end of mini-batch learning. To
learn a DNF classifier in the iterative approach, we learn a single clause of the DNF
classifier in each iteration, remove covered samples, and continue till no training
sample remains. In this context, the coverage of a clause in a DNF formula is the
set of samples satisfying the clause.

40

3.5.2 Learning Decision Lists

In IMLI, we apply an iterative learning approach for efficiently learning a decision
list. A decision list RL is a list of pairs (C1, V1), . . . , (Ck, Vk), where we learn one pair
in each iteration. We note that the clause Ci is a conjunction of literals—equivalently,
a single clause DNF formula. Hence, our task is to deploy IMLI to efficiently learn
a single clause DNF formula Ci. In particular, we opt to learn this clause for the
majority class, say Vi, in the training dataset by setting the majority samples as
class 1 and all other samples as class 0. As a result, even if the MaxSAT-based
learning, presented in this chapter, is targeted for binary classification, we can learn
a multi-class decision list in IMLI.

In Algorithm 3, we present the iterative algorithm for learning decision lists.
In each iteration, the algorithm learns a pair (Ci, Vi), separates the training set
based on the coverage of (Ci, Vi) and conquers the remaining samples recursively.
The coverage of (Ci, Vi) is the set of samples that satisfies clause Ci. Finally, we
add a default rule (Ck, Vdefault) to RL where Ck , true denoting that the clause is
satisfied by all samples. We select the default class Vdefault in the following order: (i)
if any class(s) is not in the predicted classes {Vi}k−1

i=1 of the decision list, Vdefault is
the majority class among missing classes, and (ii) Vdefault is the majority class of the
original training set D, otherwise.

Algorithm 3 Iterative Learning of Decision Lists
1: procedure DecisionListLearning(D, λ, k)
2: RL ← {}
3: for i← 1, . . . , k − 1 and D 6= ∅ do
4: Vi ←MajorityClass({y(i)}|D|i=1) . Vi specifies the target class given

class label
5: Ci ←MiniBatchDNFLearning(D, λ, 1, Vi) . Ref. Chapter 3.5.1
6: D′ ← Coverage(D, Ci)
7: if D′ = ∅ then
8: break
9: RL ← RL ∪ {(Ci, Vi)}
10: D← D \D′

11: RL ← RL ∪ {(true, Vdefault)} . Default rule
12: return RL

41

3.5.3 Learning Decision Sets

We now describe an iterative procedure for learning decision sets. A decision set
comprises of an individual clause-class pair (Ci, Vi) where Ci denotes a single clause
DNF formula similar to decision lists. In a decision set, a sample can satisfy multiple
clauses simultaneously, which is attributed as an overlapping between clauses [93].
Concretely, the overlap between two clauses Ci and Cj with i 6= j is the set of
samples {x|x |= Ci ∧ x |= Cj} satisfying both clauses. One additional objective in
learning a decision set is to minimize the overlap between clauses, as studied in [93].
Therefore, along with optimizing accuracy and rule-sparsity, we discuss an iterative
procedure for decision sets that additionally minimizes the overlap between clauses.

Algorithm 4 Iterative Learning of Decision Sets
1: procedure DecisionSetsLearning(D, λ, k)
2: RS = {}
3: Dcc = {} . Contains correctly covered samples
4: for i← 1, . . . , k − 1 and D 6= ∅ do
5: Vi ←MajorityClass({y(i)}|D|i=1)
6: Dw = D ∪ {(x,¬Vi)|(x, y) ∈ Dcc} . Appending covered samples with

complemented class
7: Ci ←MiniBatchDNFLearning(Dw, λ, 1, Vi)
8: D′ ← CorrectCoverage(D, Ci, Vi)
9: if (D′ = ∅ then
10: break
11: RS ← RS ∪ {(Ci, Vi)}
12: D← D \D′
13: Dcc = Dcc ∪D′

14: RS ← RS ∪ {(true, Vdefault)}
15: return RS

In Algorithm 4, we present an iterative algorithm for learning a decision set.
The iterative algorithm is a modification of separate-and-conquer algorithm by
additionally focusing on minimizing overlaps in a decision set. Given a training data
D = {(x(i), y(i))}ni=1, a regularization parameter λ, and the number of clauses k, the
core idea of Algorithm 4 is to learn a pair (Ci, Vi) in each iteration, separate covered
samples from D, and conquer remaining samples recursively. In contrast to learning
decision lists, we have following modifications in Algorithm 4.

• The first modification is with respect to the definition of coverage for decision

42

sets. Unlike decision lists, we separate samples that are correctly covered by
(Ci, Vi) in each iteration. Given a dataset D = {(x(l), y(l))}, the correctly
covered samples of (Ci, Vi) is a dataset Dcc = {(x(l), y(l))|x(l) |= Ci ∧ y(l) =
Vi}|D|l=1 ⊆ D of samples that satisfy Ci and have matching class-label as Vi.

• The second modification is related to the training dataset considered in each
iteration. Let D denote the remaining training dataset in the current iteration
and Vi be the majority class in D. Hence, Vi is the target class in the current
iteration. Also, let Dcc denotes the set of samples correctly covered in all
previous iterations. In Algorithm 4, we learn the current rule Ci on the working
dataset Dw = D∪ {(x,¬Vi)|(x, y) ∈ Dcc}. Thus, Dw is constructed by joining
the remaining training samples with correctly covered samples in Dcc with
complemented class label to the target class Vi. Thus, by explicitly labeling
covered samples as class ¬Vi, the new clause Ci learns to falsify already covered
samples. This heuristic allows us to minimize the overlap of Ci compared to
previously learned clauses {Cj}i−1

j=1.

Finally, the default clause for decision sets is learned similarly as in decision lists.

3.6 Empirical Performance Analysis
In this section, we empirically evaluate the performance of IMLI. We first present

the experimental setup and the objective of the experiments, followed by experimental
results.

3.6.1 Experimental Setup

We implement a prototype of IMLI in Python to evaluate the performance of
the MaxSAT-based formulation for learning classification rules. To implement IMLI,
we deploy a state-of-the-art MaxSAT solver Open-WBO [119], which returns the
current best solution upon reaching a timeout.

We compare IMLI with state-of-the-art interpretable and non-interpretable clas-
sifiers. Among interpretable classifiers, we compare with RIPPER [38], BRL [101],
CORELS [6], and BRS [188]. Among non-interpretable classifiers, we compare with
Random Forest (RF), Support Vector Machine with linear kernels (SVM), Logistic

43

Regression classifier (LR), and k-Nearest Neighbors classifier (kNN). We deploy the
Scikit-learn library in Python for implementing non-interpretable classifiers.

We experiment with real-world binary classification datasets from UCI [46],
Open-ML [181], and Kaggle repository (https://www.kaggle.com/datasets), as
listed in Table 3.1. In these datasets, the number of samples vary from about 200
to 1, 000, 000. The datasets contain both real-valued and categorical features. We
process them to binary features by setting the maximum number of bins as 10 during
discretization. For non-interpretable classifiers such as RF, SVM, LR, and kNN that
take real-valued features as inputs, we only convert categorical features to one-hot
encoded binary features.

We perform ten-fold cross-validation on each dataset and evaluate the perfor-
mance of different classifiers based on the median prediction accuracy on the test
data. Additionally, we compare the median size of generated rules among rule-
based interpretable classifiers. We consider a comparable combination (100) of
hyper-parameters choices for all classifiers, that we fine-tune during cross-validation.
For IMLI, we vary the number of clauses k ∈ {1, 2, . . . , 5} and the regularization
parameter λ in a logarithmic grid by choosing 5 values between 10−4 and 101. For
mini-batch learning in IMLI, we set the number of samples in each mini-batch,
n′ ∈ {50, 100, 200, 400}. Thus, we consider dn/n′e mini-batches, where n denotes
the size of training data. To construct mini-batches from a training dataset, we
sequentially split the data into dn/n′e batches with each batch having n′ samples.
Furthermore, to ignore the effect of batch-ordering, we perform mini-batch learning
in two rounds such that each batch participates twice in the training.

For BRL algorithm, we vary four hyper-parameters: the maximum cardinality of
rules in {2, 3, 4}, the minimum support of rules in {0.05, 0.175, 0.3}, and the prior
on the expected length and width of rules in {2, 4, 6, 8} and {2, 5, 8}, respectively.
For CORELS algorithm, we vary three hyper-parameters: the maximum cardinality
of rules in {2, , 5}, the minimum support of rules in {0.01, 0.17, 0.33, 0.5}, and the
regularization parameter in {0.005, 0.01, 0.015, 0.02, 0.025, 0.03}. For BRS algorithm,
we vary three hyper-parameters: the maximum length of rules in {1, 2, 3, 4}, the
number of initial rules in {500, 1000, 1500, 2000, 2500, 3000}, and the minimum
support of rules in {1, 4, 7, 10}. For RF and RIPPER classifiers, we vary the cut-off
on the number of samples in the leaf node using a linear grid between 3 to 500 and

44

https://www.kaggle.com/datasets

1 to 300, respectively. For SVM and LR classifiers, we discretize the regularization
parameter on a logarithmic grid between 10−3 and 103. For kNN, we vary the number
of neighbors in a linear grid between 1 and 500. We conduct each experiment on an
Intel Xeon E7− 8857 v2 CPU using a single core with 16 GB of RAM running on
a 64bit Linux distribution based on Debian. For all classifiers, we set the training
timeout to 1000 seconds.

Objectives of Experiments. In the following, we present the objectives of our
experimental study.

1. How are the accuracy and size of classification rules generated by IMLI compared
to existing interpretable classifiers?

2. How is the scalability of IMLI in solving large-scale classification problems
compared to existing interpretable classifiers?

3. How does IMLI perform in terms of accuracy and scalability compared to
classifiers that are non-interpretable?

4. How does the incremental learning in IMLI perform compared to non-incremental
MaxSAT-based learning in terms of accuracy, rule-sparsity, and scalability?

5. How do different interpretable classification rules learned using IMLI perform
in terms of accuracy and rule size?

6. What are the effects of different hyper-parameters in IMLI?

Summary of Experimental Results. To summarize our experimental results,
IMLI achieves the best balance among prediction accuracy, interpretability, and
scalability compared to existing interpretable rule-based classifiers. Particularly,
compared to the most accurate classifier RIPPER, IMLI demonstrates on average
1% lower prediction accuracy, wherein the accuracy of IMLI is higher than BRL,
CORELS, and BRS in almost all datasets. In contrast, IMLI generates significantly
smaller rules than RIPPER, specifically in large datasets. Moreover, BRL, CORELS,
and BRS report comparatively smaller rule size than IMLI on average, but with
a significant decrease in accuracy. In terms of scalability, IMLI achieves the best

45

performance compared to other interpretable and non-interpretable classifiers by
classifying datasets with one million samples. While CORELS also scales to such
large datasets, its accuracy is lower than that of IMLI by at least 2% on average.
Therefore, IMLI is not only scalable but also accurate in practical classification
problems while also being interpretable by design. We additionally analyze the
comparative performance of different formulations presented in this chapter, where
the incremental approach empirically proves its efficiency than the naïve MaxSAT
formulation. Furthermore, we learn and compare the performance of different
interpretable representations: decision lists, decision sets, CNF, and DNF formulas
using IMLI and present the efficacy of IMLI in learning varied interpretable classifiers.
Finally, we study the effect of different hyper-parameters in IMLI, where each hyper-
parameter provides a precise control among training time, prediction accuracy, and
rule-sparsity. In the following, we discuss our experimental results in detail.

3.6.2 Experimental Results

Comparing IMLI with interpretable classifiers. We compare IMLI with existing
interpretable classifiers in three aspects: test accuracy, rule size, and scalability.

Test accuracy and rule size. We present the experimental results of test accuracy
and rule size among interpretable classifiers in Table 3.1, where the first, second,
and third columns represent the name of the dataset, the number of samples, and
the number of features in the dataset, respectively. In each cell from the fourth to
the eighth column in the table, the top value represents the median test accuracy
and the bottom value represents the median size of rules measured through ten-fold
cross-validation.

In Table 3.1, IMLI and CORELS generate interpretable classification rules in
all 15 datasets in our experiments. In contrast, within a timeout of 1000 seconds,
RIPPER, BRL, and BRS fail to generate any classification rule in three datasets,
specifically in large datasets (≥ 200, 000 samples).

We now compare IMLI with each interpretable classifier in detail. Compared to
RIPPER, IMLI has lower accuracy in 9 out of 12 datasets. More specifically, the
accuracy of IMLI is 1% lower on average than RIPPER. The improved accuracy of
RIPPER, however, results in the generation of higher size classification rules than

46

Table 3.1: Comparison of accuracy and rule size among interpretable classifiers.
Each cell from the fourth to the eighth column contains test accuracy (top) and
rule size (bottom). ‘—’ represents a timeout. Numbers in bold represent the best
performing results among different classifiers.

Dataset Size Features RIPPER BRL CORELS BRS IMLI

Parkinsons 195 202 94.44 94.74 89.74 84.61 94.74
7.0 11.5 2.0 5.0 7.5

WDBC 569 278 98.08 93.81 92.04 92.98 94.74
13.0 22.0 2.0 7.0 11.5

Pima 768 83 77.14 68.18 75.32 75.32 78.43
6.0 13.5 2.0 3.0 23.0

Titanic 1, 043 38 78.72 62.98 81.9 80.86 81.82
6.0 15.0 4.0 4.0 5.5

MAGIC 19, 020 100 82.68 76.95 78.05 77.5 78.26
102.0 81.0 4.0 3.0 8.5

Tom’s HW 28, 179 946 85.91 — 83.27 83.13 85.24
30.0 — 4.0 18.5 44.5

Credit 30, 000 199 82.39 46.12 81.18 80.45 82.12
32.5 26.5 2.0 7.0 17.5

Adult 32, 561 94 84.37 72.08 79.78 70.75 81.2
115.5 46.5 4.0 4.0 30.0

Bank Marketing 45, 211 82 90.01 84.66 89.62 86.75 89.84
36.5 13.0 2.0 2.0 24.5

Connect-4 67, 557 126 76.72 65.83 68.68 70.49 75.36
118.0 18.5 4.0 11.0 50.5

Weather AUS 107, 696 169 84.22 43.26 83.67 — 83.78
26.0 22.0 2.0 — 22.0

Vote 131, 072 16 97.12 94.78 95.86 95.14 96.69
132.0 41.5 3.5 1.0 15.0

Skin Seg 245, 057 30 — 79.25 91.62 68.48 94.71
— 6.0 9.0 5.0 30.0

BNG(labor) 1, 000, 000 89 — — 88.56 — 90.91
— — 2.0 — 24.0

BNG(credit-g) 1, 000, 000 97 — — 72.08 — 75.48
— — 2.0 — 27.5

47

IMLI in most datasets. In particular, IMLI generates sparser rules than RIPPER in
9 out of 12 datasets, wherein RIPPER times out in 3 datasets. Interestingly, the
difference in rule size is more significant in larger datasets, such as in ‘Vote’ dataset,
where RIPPER learns a classifier with 132 Boolean literals compared to 15 Boolean
literals by IMLI. Therefore, IMLI is better than RIPPER in terms of rule-sparsity,
but lags slightly in accuracy.

IMLI performs better than BRL both in terms of accuracy and rule-sparsity.
In particular, IMLI has higher accuracy and lower rule size than BRL in 12 and
8 datasets, respectively, in a total of 12 datasets, wherein BRL times out in 3
datasets. While comparing with CORELS, IMLI achieves higher accuracy in almost
all datasets (14 out of 15 datasets). A similar trend is observed in comparison with
BRS, where IMLI achieves higher accuracy in all of 12 datasets and BRS times out
in 3 datasets. CORELS and BRS, however, generates sparser rules than IMLI in
most datasets, but by costing a significant decrease in accuracy. For example, in the
largest dataset ‘BNG(credit-g)’ with 1 Million samples, BRS times out and CORELS
generates a classifier with 72.08% accuracy with rule size 2. IMLI, in contrast, learns
a classifier with 27.5 Boolean literals achieving 75.48% accuracy, which is 3% higher
than CORELS. Therefore, IMLI makes a good balance between accuracy and rule
size compared to existing interpretable classifiers while also being highly scalable. In
the following, we discuss the results on the scalability of all interpretable classifiers
in detail.

Scalability. We analyze the scalability among interpretable classifiers by com-
paring their training time. In Figure 3.1, we use cactus plots6 to represent the
training time (in seconds) of all classifiers in 1000 instances (10 folds × 100 choices
of hyper-parameters) derived for each dataset. In the cactus plot, the number of
solved instances (within 1000 seconds) is on the X-axis, whereas the training time is
on the Y -axis. A point (x, y) on the plot implies that a classifier yields lower than
or equal to y seconds of training in x many instances.

In Figure 3.1, we present results in an increasing number of samples in a dataset
(from left to right). In WDBC and Adult datasets presented on the first two plots
in Figure 3.1, CORELS solves lower than 600 instances within a timeout of 1000

6Cactus plots are often used in (Max)SAT community to present the scalability of different
solvers/methods [9, 11].

48

seconds. The scalability performance of BRS is even worse, where it solves around
700 and 200 instances in WDBC and Adult datasets, respectively. The other three
classifiers: IMLI, BRL, and RIPPER solve all 1000 instances, where BRL takes
comparatively higher training time than the other two. The performance of IMLI and
RIPPER is similar, with RIPPER being comparatively better in the two datasets.
However, the efficiency of IMLI compared to other classifiers becomes significant
as the number of samples in a dataset increases. In particular, in ‘Weather AUS’
dataset, BRS cannot solve a single instance, BRL and CORELS solves 400 instances,
and RIPPER solves around 600 instances. IMLI, however, solves all 1000 instances
in this dataset. Similarly, in ‘BNG(labor)’ dataset, all other classifiers except IMLI
and CORELS cannot solve any instance. While IMLI mostly takes the maximum
allowable time (1000 seconds) in solving all instances in this dataset, CORELS
can solve lower than 400 instances. The improved performance of IMLI is due to
incremental learning based on the novel integration of iterative learning and mini-
batch learning. Contrary to our incremental learning, earlier approaches are based
on heuristic rule-pruning (e.g., RIPPER) and rule-mining followed by Bayesian
optimization (e.g., BRL, BRS) and branch and bounds algorithms (e.g., CORELS).
Thus, owing to incremental learning, IMLI establishes itself as the most scalable
classifier compared to other state-of-the-art interpretable classifiers.

Comparison with non-interpretable classifiers. We compare IMLI with state
of the art non-interpretable classifiers such as LR, SVM, kNN, and RF in terms of
their median test accuracy in Table 3.2. In the majority of the datasets, IMLI achieves
comparatively lower test accuracy than the best performing non-interpretable clas-
sifier. The decrease in the test accuracy of IMLI is attributed to two factors.
Firstly, while we train IMLI on discretized data, non-interpretable classifiers are
trained on non-discretized data and thus IMLI incurs additional classification er-
rors due to discretization. Secondly, IMLI learns a rule-based classifier, whereas
non-interpretable classifiers can learn more flexible decision boundaries and thus fit
data well. In Table 3.2, we also observe that IMLI achieves impressive scalability
than competing classifiers by solving datasets with 1, 000, 000 samples where most
of the non-interpretable classifiers fail to learn any decision boundary on such large
datasets. Thus, IMLI, being an interpretable classifier, demonstrates lower accuracy

49

0 200 400 600 800 1000
Instances solved

10 1

100

101

102

103

Tr
ai

ni
ng

 ti
m

e
(s

)

WDBC

RIPPER
CORELS
BRS
BRL
IMLI

0 200 400 600 800 1000
Instances solved

100

101

102

103

Tr
ai

ni
ng

 ti
m

e
(s

)

Adult

RIPPER
CORELS
BRS
BRL
IMLI

0 200 400 600 800 1000
Instances solved

101

102

103

Tr
ai

ni
ng

 ti
m

e
(s

)

Weather AUS

RIPPER
CORELS
BRS
BRL
IMLI

0 200 400 600 800 1000
Instances solved

102

103
Tr

ai
ni

ng
 ti

m
e

(s
)

BNG(labor)

RIPPER
CORELS
BRS
BRL
IMLI

Figure 3.1: Comparison of scalability among interpretable classifiers. The plots are
arranged in increasing sizes of datasets (from left to right). In each cactus plot, IMLI
solves all 1000 instances for each dataset, while competitive classifiers often fail to
scale, specially in larger datasets.

than competing non-interpretable classifiers, but higher scalability in practice.

Comparison among different formulations in IMLI. We compare the perfor-
mance of different formulations for learning classification rules as presented in this
chapter. In Figure 3.2, we show cactus plots for assessing training time (in seconds),
test error (in percentage), and rule size among different formulations. In the cactus
plot, a point (x, y) denotes that the formulation yields lower than or equal to y
training time (similarly, test error and rule size) in x many instances in each dataset.

In Figure 3.2, we denote the baseline non-incremental MaxSAT-based formulation
as IMLI-B7, incremental MaxSAT-based formulation with only mini-batch learning
as IMLI-M, and incremental MaxSAT-based formulation with both mini-batch and

7Since IMLI-B is a non-incremental formulation and does not involve any mini-batch learning,
we consider two hyper-parameters for IMLI-B: the number of clauses in {1, 2, . . . , 10} and the
regularization parameter λ as 10 values chosen from a logarithmic grid between 10−4 and 101.

50

Table 3.2: Comparison of IMLI with non-interpretable classifiers in terms of test
accuracy. In the table, ‘—’ represents a timeout. Numbers in bold represent the
best performing results among different classifiers.

Dataset Size LR SVM kNN RF IMLI

Parkinsons 195 89.74 89.74 97.5 90.0 94.74
WDBC 569 98.25 98.25 98.23 96.49 94.74
Pima 768 78.43 79.08 74.5 79.22 78.43
Titanic 1, 043 80.86 80.38 81.34 82.69 81.82
MAGIC 19, 020 79.18 79.34 84.6 88.2 78.26
Tom’s HW 28, 179 96.2 97.13 88.15 97.78 85.24
Credit 30, 000 82.2 81.9 81.83 82.15 82.12
Adult 32, 561 85.26 85.05 83.8 86.69 81.2
Bank Marketing 45, 211 90.09 89.28 89.43 90.27 89.84
Connect-4 67, 557 79.39 — 85.51 88.11 75.36
Weather AUS 107, 696 85.64 — 78.59 86.26 83.78
Vote 131, 072 96.43 96.37 97.05 97.38 96.69
Skin Seg 245, 057 91.86 — 99.96 99.96 94.71
BNG(labor) 1, 000, 000 — — — — 90.91
BNG(credit-g) 1, 000, 000 — — — 80.58 75.48

iterative learning as IMLI. We first observe the training time of different formulations
in the left-most column in Figure 3.2, where IMLI-B soon times out and solves
lower than 300 instances out of 1000 instances in each dataset. This result suggests
that the non-incremental formulation cannot scale in practical classification task.
Comparing between IMLI and IMLI-M, both formulations solve all 1000 instances
in each dataset with IMLI-M undertaking significantly higher training time than
IMLI. Therefore, IMLI achieves better scalability than IMLI-M indicating that an
integration of mini-batch and iterative learning achieves a significant progress in
terms of scalability than mini-batch learning alone.

We next focus on the test error of different formulations in the middle column in
Figure 3.2. Firstly, IMLI-B has a higher test error than the other two formulations
since IMLI-B times out in most instances and learns a sub-optimal classification
rule with reduced prediction accuracy. In contrast, IMLI has the lowest test error
compared to two formulations in all datasets. This result indicates the effectiveness of
integrating both iterative and mini-batch learning with MaxSAT-based formulation
in generating more accurate classification rules.

Moving focus on the rule size in the rightmost column in Figure 3.2, IMLI-B

51

0 200 400 600 800 1000
Instances solved

100

101

102

103

Tr
ai

ni
ng

 ti
m

e
(s

)

WDBC

IMLI-B
IMLI-M
IMLI

0 200 400 600 800 1000
Instances solved

0
5

10
15
20
25
30
35
40

Te
st

 E
rro

r

WDBC
IMLI-B
IMLI-M
IMLI

0 200 400 600 800 1000
Instances solved

0
25
50
75

100
125
150

Ru
le

 si
ze

WDBC
IMLI-B
IMLI-M
IMLI

0 200 400 600 800 1000
Instances solved

102

103

Tr
ai

ni
ng

 ti
m

e
(s

)

Credit

IMLI-B
IMLI-M
IMLI

0 200 400 600 800 1000
Instances solved

17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5

Te
st

 E
rro

r
Credit

IMLI-B
IMLI-M
IMLI

0 200 400 600 800 1000
Instances solved

0
10
20
30
40
50
60
70

Ru
le

 si
ze

Credit
IMLI-B
IMLI-M
IMLI

0 200 400 600 800 1000
Instances solved

102

103

Tr
ai

ni
ng

 ti
m

e
(s

)

Adult

IMLI-B
IMLI-M
IMLI

0 200 400 600 800 1000
Instances solved

14

16

18

20

22

24

26

Te
st

 E
rro

r

Adult

IMLI-B
IMLI-M
IMLI

0 200 400 600 800 1000
Instances solved

0

20

40

60

80

Ru
le

 si
ze

Adult
IMLI-B
IMLI-M
IMLI

Figure 3.2: Comparison of training time, test error, and rule size among different for-
mulations presented in the chapter. In each cactus plot, the incremental formulation
IMLI with both mini-batch and iterative learning demonstrates the best performance
in training time and test error than compared two formulations: non-incremental
MaxSAT formulation IMLI-B and incremental formulation with only mini-batch
learning IMLI-M. In terms of rule size, IMLI often generates higher size rules than
IMLI-M.

achieves the highest rule size in WDBC dataset. In contrast, the rule size of IMLI-B
is lowest (zero) in Credit and Adult datasets. In the last two datasets, IMLI-B times
out during training and returns the default rule “true” by predicting all samples as
class 1. The other two formulations IMLI and IMLI-M demonstrate a similar trend
in rule size in all datasets with IMLI-M generating comparatively smaller size rules
in Credit and Adult datasets. In this context, the improvement of rule-sparsity of
IMLI-M is due to a comparatively higher test error (or lower accuracy) than IMLI as
observed in all three datasets. Therefore, IMLI appears to be the best performing
formulation w.r.t. training time, test error, and rule size by balancing between

52

Table 3.3: Comparison of test accuracy (top value) and rule size (bottom value)
among different rule-based representations learned using IMLI. Numbers in bold
denote the best performing results among different representations.

Dataset CNF DNF Decision Sets Decision Lists

Parkinsons 94.74 89.47 94.87 89.74
7.5 6.0 15.0 6.5

WDBC 94.74 96.49 95.61 95.61
11.5 15.0 15.5 10.0

Pima 78.43 77.13 76.97 76.97
23.0 9.0 15.0 13.5

Titanic 81.82 82.29 81.82 82.3
5.5 10.5 8.5 8.0

MAGIC 78.26 77.44 75.87 77.79
8.5 41.5 10.0 14.0

Tom’s HW 85.24 85.15 85.72 85.95
44.5 26.5 45.0 59.5

Credit 82.12 82.15 82.03 82.22
17.5 14.0 9.5 21.5

Adult 81.2 84.28 80.07 80.96
30.0 34.5 7.0 24.5

Bank Marketing 89.84 89.77 89.67 89.79
24.5 7.5 6.0 10.5

Connect-4 75.36 70.63 68.09 69.83
50.5 42.0 4.5 24.0

Weather AUS 83.78 84.23 83.69 83.85
22.0 14.0 4.0 26.0

Skin Seg 94.71 93.68 87.92 91.17
30.0 15.0 3.0 7.0

accuracy and rule size while being more scalable.

Performance evaluation of different interpretable representations in IMLI.
We deploy IMLI to learn different interpretable rule-based representations: CNF
and DNF classifiers, decision lists, and decision sets and present their comparative
performance w.r.t. test accuracy and rule size in Table 3.3. In each cell in this table,
the top value represents the test accuracy and the bottom value represents the size
of generated rules.

53

1 2 3 4 5
Clauses k

92.5
93.0
93.5
94.0
94.5
95.0
95.5

Te
st

 a
cc

ur
ac

y

WDBC

1 2 3 4 5
Clauses k

93.0
93.5
94.0
94.5
95.0
95.5
96.0

Tr
ai

n
ac

cu
ra

cy

WDBC

1 2 3 4 5
Clauses k

8
10
12
14
16
18
20

Ru
le

 si
ze

WDBC

1 2 3 4 5
Clauses k

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 ti
m

e
(s

) WDBC

1 2 3 4 5
Clauses k

77
78
79
80
81
82

Te
st

 a
cc

ur
ac

y

Titanic

1 2 3 4 5
Clauses k

79

80

81

82

Tr
ai

n
ac

cu
ra

cy

Titanic

1 2 3 4 5
Clauses k

4
6
8

10
12
14
16

Ru
le

 si
ze

Titanic

1 2 3 4 5
Clauses k

2 × 100

3 × 100

Tr
ai

ni
ng

 ti
m

e
(s

) Titanic

1 2 3 4 5
Clauses k

80.00
80.25
80.50
80.75
81.00
81.25

Te
st

 a
cc

ur
ac

y

Adult

1 2 3 4 5
Clauses k

80.2
80.4
80.6
80.8
81.0
81.2
81.4

Tr
ai

n
ac

cu
ra

cy

Adult

1 2 3 4 5
Clauses k

10

20

30

40

50

Ru
le

 si
ze

Adult

1 2 3 4 5
Clauses k

3 × 102

4 × 102

Tr
ai

ni
ng

 ti
m

e
(s

) Adult

Figure 3.3: Effect of the number of clauses k on accuracy (test and train), rule size,
and training time. As k increases, both train and test accuracy of IMLI increase
while generating rules with higher size by incurring higher training time.

We learn all four interpretable representations on twelve datasets, where the
CNF classifier appears to be the most accurate representation by achieving the
highest accuracy in five datasets. In contrast, both DNF and decision lists achieve
the highest accuracy in three datasets each; decision sets demonstrate the least
performance in test accuracy by being more accurate in one dataset. To this end, the
poor accuracy of decision sets is traded off by its rule size as decision sets generate
the sparsest rules compared to other representations. More precisely, decision sets
have the smallest rule size in six datasets, while CNF, DNF, and decision lists
have the smallest rule size in two, three, and one dataset, respectively. These
results suggest that CNF classifiers are more favored in applications where higher
accuracy is preferred, while decision sets are preferred in applications where higher
interpretability is desired. In both cases, one could deploy IMLI for learning varied
representations of classification rules.

54

Ablation study. We experiment the effect of different hyper-parameters in IMLI
on prediction accuracy, rule size, and training time in different datasets. In the
following, we discuss the impact of the number of clauses, regularization parameter,
and size of mini-batches in IMLI.

Effect of the number of clauses k. In Figure 3.3, we vary k while learning
CNF classifiers in IMLI. As k increases, both training and test accuracy generally
increase in different datasets (plots in the first and second columns). Similarly, the
size of rules increases with k by incurring higher training time (plots in the third
and fourth columns). The reason is that a higher value of k allows more flexibility
in fitting the data well by incurring more training time and generating higher size
classification rules. Therefore, the number of clauses in IMLI provides control on
training-time vs accuracy and also on accuracy vs rule-sparsity.

Effect of regularizer λ. In Figure 3.4, we vary λ in a logarithmic grid between
10−4 and 101. As stated in Eq. (3.5), a higher value of λ puts more priority on the
minimal changes in rules between consecutive mini-batches in incremental learning
while allowing higher mini-batch errors. Thus, in the first and second columns in
Figure 3.4, as λ increases, both training and test accuracy gradually decrease. In
addition, the size of rules (plots in the third column) also decreases. Finally, we
observe that the training time generally decreases with λ. This observation indicates
that higher λ puts lower computational load to the MaxSAT solver as a fraction
of training examples is allowed to be misclassified. Thus, similar to the number of
clauses, regularization parameter λ in IMLI allows to trade-off between accuracy and
rule size in a precise manner.

Effect of the size of mini-batch. In Figure 3.5, we present the effect of
mini-batch size in IMLI. As we consider more samples in a batch, both test and
training accuracy increase in general as presented in the first and second columns in
Figure 3.5. Similarly, the size of generated rules also increases with the number of
samples. Due to solving higher size MaxSAT queries, the training time also increases
in general with an increase in mini-batch size. Therefore, by varying the size of
mini-batches, IMLI allows controlling on training time vs the prediction accuracy
(and rule size) of generated rules.

55

10 4 10 3 10 2 10 1 100 101

Regularizer

84
86
88
90
92
94

Te
st

 a
cc

ur
ac

y

WDBC

10 4 10 3 10 2 10 1 100 101

Regularizer

86

88

90

92

94

Tr
ai

n
ac

cu
ra

cy

WDBC

10 4 10 3 10 2 10 1 100 101

Regularizer

4
6
8

10
12
14
16

Ru
le

 si
ze

WDBC

10 4 10 3 10 2 10 1 100 101

Regularizer
100

101

102

Tr
ai

ni
ng

 ti
m

e
(s

) WDBC

10 4 10 3 10 2 10 1 100 101

Regularizer

78

79

80

81

Te
st

 a
cc

ur
ac

y

Titanic

10 4 10 3 10 2 10 1 100 101

Regularizer

79.5
80.0
80.5
81.0
81.5
82.0
82.5

Tr
ai

n
ac

cu
ra

cy

Titanic

10 4 10 3 10 2 10 1 100 101

Regularizer
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ru
le

 si
ze

Titanic

10 4 10 3 10 2 10 1 100 101

Regularizer

2 × 100

3 × 100

4 × 100

Tr
ai

ni
ng

 ti
m

e
(s

) Titanic

10 4 10 3 10 2 10 1 100 101

Regularizer
77.5
78.0
78.5
79.0
79.5
80.0
80.5
81.0

Te
st

 a
cc

ur
ac

y

Adult

10 4 10 3 10 2 10 1 100 101

Regularizer

78

79

80

81

Tr
ai

n
ac

cu
ra

cy

Adult

10 4 10 3 10 2 10 1 100 101

Regularizer

10

20

30

40

Ru
le

 si
ze

Adult

10 4 10 3 10 2 10 1 100 101

Regularizer

102

2 × 102

3 × 102

4 × 102

Tr
ai

ni
ng

 ti
m

e
(s

) Adult

Figure 3.4: Effect of regularization λ on accuracy (test and train), rule size, and
training time. As λ increases, lower priority is given to accuracy. As a result, both
training and test accuracy decrease with λ by generating smaller rules.

3.7 Chapter Summary
Interpretable machine learning is gaining more focus with applications in many

safety-critical domains. Considering the growing demand for interpretable models,
it is challenging to design learning frameworks that satisfy all aspects: being
accurate, interpretable, and scalable in practical classification tasks. In this chapter,
we discuss a MaxSAT-based framework IMLI for learning interpretable rule-based
classifiers expressible in CNF formulas. IMLI is built on efficient integration of
incremental learning, specifically mini-batch and iterative learning, with MaxSAT-
based formulation. In our empirical evaluation, IMLI achieves the best balance
among prediction accuracy, interpretability, and scalability. In particular, IMLI
demonstrates competitive prediction accuracy and rule size compared to existing
interpretable rule-based classifiers. In addition, IMLI achieves impressive scalability
than both interpretable and non-interpretable classifiers by learning interpretable
rules on million-size datasets with higher accuracy. Finally, IMLI generates other

56

50 100 200 400
Batch size

89

90

91

92

93

Te
st

 a
cc

ur
ac

y

WDBC

50 100 200 400
Batch size

92.5
93.0
93.5
94.0
94.5
95.0
95.5

Tr
ai

n
ac

cu
ra

cy

WDBC

50 100 200 400
Batch size

10
11
12
13
14
15
16

Ru
le

 si
ze

WDBC

50 100 200 400
Batch size

101

3 × 100

4 × 100

6 × 100

Tr
ai

ni
ng

 ti
m

e
(s

) WDBC

50 100 200 400
Batch size

78
79
80
81
82

Te
st

 a
cc

ur
ac

y

Titanic

50 100 200 400
Batch size

79.5
80.0
80.5
81.0
81.5
82.0

Tr
ai

n
ac

cu
ra

cy

Titanic

50 100 200 400
Batch size

9
10
11
12
13
14
15

Ru
le

 si
ze

Titanic

50 100 200 400
Batch size

2 × 100

3 × 100

4 × 100

Tr
ai

ni
ng

 ti
m

e
(s

) Titanic

50 100 200 400
Batch size

80.6
80.7
80.8
80.9
81.0
81.1

Te
st

 a
cc

ur
ac

y

Adult

50 100 200 400
Batch size

80.7
80.8
80.9
81.0
81.1

Tr
ai

n
ac

cu
ra

cy

Adult

50 100 200 400
Batch size

17.5
20.0
22.5
25.0
27.5
30.0
32.5

Ru
le

 si
ze

Adult

50 100 200 400
Batch size

2 × 102

3 × 102

4 × 102

6 × 102

Tr
ai

ni
ng

 ti
m

e
(s

) Adult

Figure 3.5: Effect of bath size on accuracy (test and train), rule size, and training
time. As we consider more samples in a mini-batch, IMLI generates more accurate
and larger size classification rules.

popular interpretable classifiers such as decision lists and decision sets using the
same framework. In the next chapter, we leverage the incremental learning in IMLI
to learn more expressible yet interpretable classification rules.

57

Chapter 4

Expressiveness via Logical Relax-
ation

In this chapter, we focus on improving the expressiveness of interpretable rule-
based classifiers. As demonstrated in Chapter 3, CNF/DNF rules are considered
interpretable, but they are less expressive compared to Boolean cardinality con-
straints. A Boolean cardinality constraint allows one to express numerical bounds
on Boolean variables [169]. In this chapter, we introduce a novel formulation of
interpretable classification rules, namely relaxed-CNF, which achieve benefits of both
worlds: it is interpretable similar to CNF/DNF but more expressible by allowing
cardinality constraints in the representation.

We find the motivation of relaxed-CNF rules from checklists. A checklist is a
list of conditions that one needs to check, e.g., a list of items to take on a travel
trip. Checklists have several applications in interpretable decision making [26, 58],
particularly in the medical domain. For example, the CHADS2 score in medicine is
a clinical prediction rule for estimating the risk of stroke [58]. Another example of
checklists is a psychometric test, known as Myers–Briggs Type Indicator (MBTI) [26],
which indicates differing psychological preferences in how people perceive the world
around them and make decisions. An influential study on the importance of check-
lists [61] finds that highly complex and specialized problems can be handled smoothly
by the development and consistent usage of checklists, which we formally call as
relaxed-CNF rules.

Relaxed-CNF: An Informal Introduction. In interpretable rule-based classi-
fication, the simplest logical rules are single level-rules: ORs or ANDs of Boolean
literals, where each literal denotes either a Boolean input feature or its negation. A

58

clause is a collection of N literals connected by OR/AND. To satisfy a clause, an
OR operator requires 1 out of N literals to be assigned to 1 in the clause, while an
AND operator requires all N out of N literals to be assigned to 1. A CNF formula
is a conjunction (AND) of clauses where each clause is a disjunction (OR) of literals,
and a DNF formula is a disjunction of clauses where each clause is a conjunction of
literals. Therefore, CNF and DNF formulas can be viewed as two-level rules with
several applications in interpretable decision-making. For example, a decision set
is a DNF rule referring to a set of “if-else” conditions [79, 93]. In this chapter, we
consider a richer set of logical formulas that capture the structure of checklists. To
this end, we consider hard-OR clauses, where at least M > 1 out of N literals are
assigned to 1, and we similarly define soft-AND clauses which allow some of the
literals (at most N −M) to be 0. To be precise, the definitions of hard-OR and
soft-AND overlap. Consequently, we use hard-OR when M ≤ N/2 and soft-AND
otherwise. To extend the standard definition of CNF (which is ANDs of ORs), we
define relaxed-CNF to denote soft-ANDs of hard-ORs. Similarly, relaxed-DNF is
hard-ORs of soft-ANDs. Since hard-OR and soft-AND are differentiated based on
the value of M and N , relaxed-CNF and relaxed-DNF have the same structural
representation. In early work, Craven and Shavlik [39] considered single levelM -of-N
rules to explain black-box neural-network classifiers. Recently, Emad et al. [49] have
developed a semi-quantitative group testing approach for learning sparse single level
M -of-N rules, which are quite restrictive in their ability to fit the data. In contrast,
in this chapter, we study a much richer family of two-level relaxed-CNF rules.

Relaxed-CNF rules are more flexible than pure CNF rules, and they can accurately
fit more complex classification boundaries. For example, relaxed-CNF clauses allow
a compact encoding of the majority function1 in Boolean logic, which would require
exponentially many clauses in CNF, showing the exponential gap in the succinctness
of the two representations. In addition, relaxed-CNF and CNF rules have the same
functional form where a user has to compute the sum of true literals/clauses and
then compare the sum to different thresholds (as in the example in Figure 4.1). From
the computational perspective, the structural flexibility of relaxed-CNF compared to
CNF/DNF makes it harder to learn. Therefore, in this chapter, we ask the following

1The majority function is a Boolean function that evaluates to 0 when half or more arguments
are false, and 1 otherwise [140].

59

Figure 4.1: An illustrative example of a relaxed CNF classification rule, which
describes the decision function in the form of a two-level checklist. This classifier is
learned on the WDBC (Wisconsin diagnostic breast cancer) dataset and it predicts
whether a tumor cell is malignant or not based on the characteristics of the tumor
cell. The first column in each checklist contains Boolean literals. An entry in the
second column is 1 if the corresponding literal is true by an observed tumor cell, and
0 otherwise. In the first level, checklist A (resp. B) is true if the count of true literals
is at least 2 (resp. 3). In the second level, a tumor cell is predicted as malignant if
the count of true checklists is at least 1.

research question: can we design a combinatorial framework to efficiently learn
relaxed-CNF rules?

Contribution. The contribution of this chapter is an affirmative answer to the
above question by proposing an efficient combinatorial learning framework for
relaxed-CNF rules, namely CRR (Classification Rules in Relaxed form). In CRR, we
construct a learning objective to maximize both the prediction accuracy and the rule-
sparsity of the generated classification rule. To this end, we design a Mixed-Integer
Linear Programming (MILP) formulation for learning the optimal relaxed-CNF rule
from data. To learn a k-clause relaxed-CNF rule (say R) using the naïve MILP
formulation, the size of the MILP query expressed as the number of constraints is
O(nk), where n is the number of training samples in the dataset. Consequently, this
formulation fails to handle large datasets. To address the scalability of CRR, we
discuss an efficient mini-batch training methodology as studied in Chapter 3, where
we incrementally learn R from data by iteratively solving smaller MILP queries
corresponding to batches.

Through a comprehensive experimental evaluation over datasets from the UCI
and Kaggle repository, we observe that CRR with relaxed-CNF rules achieves an
improved trade-off between accuracy and rule sparsity and scales to datasets with

60

more than 105 samples. More significantly, CRR generates relaxed-CNF rules with
higher accuracy than CNF rules generated by [62]. Furthermore, compared to
decision lists generated by [38], relaxed-CNF rules are sparser in large datasets.

4.1 Problem Formulation
Given

1. a dataset D = {(x(i), y(i))}ni=1 of n samples, where feature vector x(i) ∈ {0, 1}m

contains m features and class label y(i) ∈ {0, 1},

2. a positive integer k ≥ 1 denoting the number of clauses to be learned in the
classification rule,

3. an integer threshold on literals ηl ∈ {0, . . . ,m} indicating the minimum number
of literals required to be true to satisfy a clause,

4. an integer threshold on clauses ηc ∈ {0, . . . , k} indicating the minimum number
of clauses required to be true to satisfy a formula, and

5. a data-fidelity parameter λ ∈ R+,

we learn a classification rule R expressed as a k clause relaxed-CNF formula sepa-
rating samples of class 1 from class 0.

Our goal is to find rules that balance two goals: being accurate while also sparse
to avoid over-fitting. To this end, we seek to minimize the total number of literals in
all clauses, which motivates us to find R with minimum |R|. In particular, suppose
R classifies all samples correctly, i.e., ∀i, y(i) = R(x(i)). Among all the rules that
classify all samples correctly, we choose the sparsest such R:

min
R
|R| such that ∀i, y(i) = R(x(i))

In practical classification tasks, perfect classification is very unusual. Hence, we
need to balance rule-sparsity with prediction error. Let ED be the set of samples
which are misclassified by R on the dataset D, i.e., ED = {(x(i), y(i))|y(i) 6= R(x(i))}.
Hence we aim to find R as follows:2

2In our formulation, it is straightforward to add class-conditional weights (e.g. to penalize
false-alarms more than mis-detects), and to allow instance weights (per sample).

61

min
R

λ

n
|ED|+

1− λ
k ·m

|R|,

where |R| denotes the size of rule, i.e., the number of literals in relaxed-CNF
formula R (ref. 2.2.1).

Each term in the objective function is normalized in [0, 1]. The data-fidelity
parameter λ ∈ [0, 1] serves to balance the trade-off between prediction accuracy
and sparsity. Higher values of λ produce lower prediction errors by sacrificing the
sparsity of R, and vice versa. It can be viewed as an inverse of the regularization
parameter.

4.2 Classification Rules in Relaxed Logical Form
In this section, we describe the main contribution of this chapter, CRR, a

framework for learning relaxed-CNF rules. CRR converts the learning problem into
an ILP-based formulation, learns the optimal assignment of variables and constructs
rule R based on the assignment. We organize the rest of this section as follows.
We discuss the decision variables in Chapter 4.2.1, the constraints and the linear
programming relaxation in Chapter 4.2.2, the incremental learning in Chapter 4.2.3,
feature discretization in Chapter 4.2.4, and adaptation of CRR for learning other
classification rules in Chapter 4.2.5.

4.2.1 Description of Variables

CRR considers two types of decision variables: (i) feature variables and (ii)
noise or classification error variables. Since feature Xj can be present or not
present in each of the k clauses, CRR considers k variables, each denoted by
Bi
j corresponding to feature Xj to denote its participation in the ith clause, i.e,

Bi
j = 1[jth feature is selected in ith clause]. The qth sample in the training dataset,

however, can be misclassified by R. Therefore, CRR introduces a noise vari-
able ξq ∈ {0, 1} corresponding to the qth sample, so that the assignment of ξq
can be interpreted whether (x(q), y(q)) is misclassified by R or not, i.e., ξq =
1[qth sample is misclassified]. Hence, the key idea of CRR for learning R is to
define an ILP (Integer Linear Program) query over k · m + n decision variables,

62

denoted by {B1
1 , B

1
2 , . . . , B

1
m, . . . , B

k
m, ξ1, . . . , ξn}. In this context, we define Bi =

{Bi
j | j = 1, . . . ,m} as a vector of feature variables corresponding to the ith clause.

4.2.2 Construction of the ILP Query

In Eq. (4.1), we discuss the ILP query Q for learning a k-clause relaxed-CNF
rule R. The objective function in Eq. (4.1a) takes care of both the rule-sparsity and
the prediction accuracy of R. Since CRR prefers a sparser rule with as few literals
as possible, we construct the objective function by preferring Bi

j to be 0. Moreover,
to encourage R to predict the training samples accurately, we penalize the number
of variables ξq that are different from 0. In this context, we utilize the parameter λ
to trade off between sparsity and accuracy. Therefore, the objective function of the
ILP query Q is to minimize the normalized sum of all noise variables ξq weighed by
the data-fidelity parameter λ and feature variables Bi

j weighed by 1− λ.
We formulate the constraints of the ILP query Q as follows. Initially, we define

the range of the decision variables and add constraints accordingly (Eq. 4.1b and
4.1c). For each sample, at first, we add constraints to mimic the behavior of hard-OR
of literals in a clause, and then we add constraints to apply soft-AND of clauses in a
formula (refer to Preliminaries in Chapter 2).

We first consider the case when the qth sample has positive class label (Eq. 4.1d).
x(q) ◦Bi ≥ ηl resembles the hard-OR operation of literals in a clause. We introduce
k auxiliary {0, 1} variables {ξq,1, . . . , ξq,k} to check whether at least ηc clauses are
satisfied, i.e., ξq,i = 1[ith clause is dissatisfied for qth sample], which let us impose
the operation of soft-AND over clauses. We then add a constraint to make sure that
at most k − ηc clauses are allowed to be dissatisfied, otherwise the noise variable ξq
is assigned to 1, i.e., the qth sample is detected as aw noise.

A negative labeled sample has to dissatisfy more than k − ηc clauses in R so
that the sample is predicted as 0, which is equivalent to satisfying more than k − ηc
constraints x(q) ◦Bi < ηl. As mentioned earlier, we introduce {0, 1} variable ξq,i to
specify if the constraint x(q) ◦Bi < ηl is dissatisfied or not and restrict the count of
dissatisfied clauses ∑k

i=1 ξq,i to be less than ηc.

63

min λ
n

n∑
q=1

ξq + 1− λ
k ·m

k∑
i=1

m∑
j=1

Bi
j (4.1a)

such that,

Bi
j ∈ {0, 1}, i = 1, . . . , k, j = 1, . . . ,m (4.1b)

ξq ∈ {0, 1}, q = 1, . . . , n (4.1c)

if ∀q ∈ {1, . . . , n}, if y(q) = 1, (4.1d)

x(q) ◦Bi +mξq,i ≥ ηl, i = 1, . . . , k (4.1e)

kξq + k − ηc ≥
k∑
i=1

ξq,i

ξq,i ∈ {0, 1}, i = 1, . . . , k

if ∀q ∈ {1, . . . , n}, y(q) = 0, (4.1f)

x(q) ◦Bi < ηl +mξq,i, i = 1, . . . , k (4.1g)

kξq + ηc >
k∑
i=1

ξq,i

ξq,i ∈ {0, 1}, i = 1, . . . , k

In the following, we show the complexity of the ILP query in terms of the number
of variables and constraints.

Proposition 6. Given a training dataset with n samples and m binary features, the
ILP query Q for learning a binary classification rule in relaxed-CNF has k ·m+ n

decision variables, k · n auxiliary variables, and k ·m+ n · (k+ 3) integer constraints.

An ILP solver takes query Q as input and returns the optimal assignment σ∗of
the variables. We extract relaxed-CNF rule R from the solution as follows.

Construction 7. Let σ∗ = ILP(Q), then Xj ∈ clause(R, i) if and only if σ∗(Bi
j) = 1.

Learning thresholds ηl and ηc: Given the training dataset D and data-fidelity
parameter λ, one could learn the optimum value of the thresholds ηc and ηl of
the desired rule R by specifying their range as constraints in the ILP query Q in
Eq. 4.1. More precisely, we need to add two integer constraints ηc ∈ {0, . . . , k} and
ηl ∈ {0, . . . ,m} in the above query and then learn their values from the solution.

64

A more generalized version to CNF rules would be to learn different thresholds
on literals for different clauses, i.e., ηl,i for the ith clause. This facilitates to capture
the complex decision boundaries, while still producing rule-based decisions. In our
ILP formulation, it is straight-forward to consider such generalization where we
put constraints ηl,i ∈ {0, . . . ,m}, i = 1, . . . , k and replace ηl with ηl,i in Eq. 4.1e
and 4.1g.

Relaxing the ILP problem: The ILP query Q has binary integer constraints
and the solution of this integer program is computationally intractable. A common
approach that efficiently finds an approximate solution to such a problem extends to
relax the integer constraints, solves the LP-relaxed (linear programming relaxation)
problem, and then rounds the non-integer variables to get an integer solution as
in [116]. In our case, we cannot relax all integer constraints because it may violate
the structure of relaxed-CNF rules. Specifically, ηc and ηl (or ηl,i) must be integers
in the construction of relaxed-CNF rules, and ξq,i needs to be an integer to precisely
calculate the noise variable ξq. However, we can relax feature variable Bi

j and noise
variable ξq and solve the corresponding MILP problem. To construct the MILP
problem, we replace Eq. 4.1b with 0 ≤ Bi

j ≤ 1 and Eq. 4.1c with 0 ≤ ξq ≤ 1, and
the rest of the constraints in Q remain the same. If non-zero Bi

j is found in the
solution, we set it to 1 and then construct the rule according to Construction 7.

4.2.3 Incremental Mini-batch Learning

In Chapter 4.2.2, we present an ILP formulation for learning relaxed-CNF rules
and then discussed the relaxation to the integer constraints in the MILP formulation
to make the approach computationally tractable. However, each integer constraints
in the formulation cannot be relaxed, as discussed in Chapter 4.2.2. Thus we require
an improved learning technique to achieve scalability. We now describe a mini-batch
learning approach to CRR, that learns relaxed-CNF rule R incrementally from a set
of mini-batches while solving a modified MILP query for each mini-batch.

In incremental mini-batch learning, the learning process repeats for a fixed
number of iterations. In each iteration, we randomly select an equal number of
samples from the full training set and generate a mini-batch with samples. We
then construct an MILP query on the current mini-batch with a modified objective

65

function. This objective function simultaneously penalizes the prediction errors on
the current mini-batch and the change in the rules learned in consecutive batches. In
the following, we discuss the modified objective function and the MILP formulation.

Let D = {(x(i), y(i))}ni=1 be a training dataset with n samples and m binary
features and τ be the number of iterations in the learning process. In the pth

iteration, we randomly construct a mini-batch from D with equal number np of
samples and np � n, for p = 1, . . . , τ . Note that all mini-batches have the same
binary features X = {X1, . . . , Xm} as in the training set and thus share the same
feature variables Bi

j in the MILP query. Therefore, we devise an objective function
that prefers to keep the assignment of Bi

j learned in the (p − 1)th iteration while
minimizing the prediction error on the current mini-batch. To this end, each Bi

j is
assigned 0 initially in the learning process. This technique enables us to update the
learned rule in terms of the update in the assignment of feature variables Bi

j over
mini-batches.

Let Qp be the MILP query for the pth mini-batch for learning a k-clause relaxed-
CNF rule Rp. Thus, R0 is an empty rule. We consider an indicator function
I(·) : Bi

j → {1,−1}, that takes a feature variable Bi
j as input and outputs −1 if Bi

j

is assigned 1 in the solution of Qp−1 (i.e., feature Xj is selected in the ith clause of
Rp−1), otherwise outputs 1.

I(Bi
j) =

−1 if Xj ∈ clause(Rp−1, i)

1 otherwise

We now discuss the modified objective function where we multiply I(Bi
j) with

Bi
j differently from the objective function in Eq. 4.1a.

min λ
n

np∑
q=1

ξq + 1− λ
k ·m

k∑
i=1

m∑
j=1

Bi
j · I(Bi

j) (4.2)

In the objective function, the first term penalizes the prediction error of samples in
the current mini-batch and the second term penalizes when Bi

j is assigned differently
than its previous assignment. Note that the total prediction error is normalized
by dividing by n, which is the size of the full training dataset. This normalization
is useful as it assists in updating Rp while also considering the relative size of the

66

mini-batch. Intuitively, if the size np of the mini-batch is close to the size n of the
training set, more priority is given to the prediction accuracy on the current batch
and vice versa. The constraints in the query Qp are similar to the constraints in
Eq. 4.1. Finally, the prediction rule R is Rτ that is learned for the last mini-batch.

Proposition 8. At each iteration, the MILP query in the incremental mini-batch
learning approach has k ·m + np · (k + 3) constraints, where np is the size of the
mini-batch.

Learning thresholds ηl and ηc: In the incremental learning, the objective
function in Eq 4.2 does not impose any constraint on the thresholds. In fact, the
thresholds are learned in each iteration by solving the corresponding MILP query
and we consider their final values in the last iteration.

4.2.4 Learning with Non-binary Features

Since our problem formulation requires input instances to have binary features,
datasets with categorical and continuous features require a preprocessing stage.
Initially, for all continuous features, we apply entropy-based discretization [53] to
infer the most appropriate number of categories/intervals by recursively splitting
the domain of each continuous feature to minimize the class-entropy of the given
dataset.3 For example, let Xc ∈ [a, b] be a continuous feature, and entropy-based
discretization splits the domain [a, b] into three intervals with two split points {a′, b′},
where a < a′ < b′ < b. Therefore, the result intervals are Xc < a′, a′ ≤ Xc < b′, and
Xc ≥ b′.

After applying entropy-based discretization on continuous features, the dataset
contains only categorical features, that can be converted to binary features using
one-hot encoding as in [95]. In this encoding, a Boolean vector is introduced with
cardinality equal to the number of distinct categories. Let a categorical feature
have three categories ‘red’,‘green’, and ‘yellow’. In one-hot encoding, samples with
category-value ‘red’,‘green’, and ‘yellow’ would be converted into binary features
while taking values 100, 010, and 001, respectively.

3A simple quantile-based discretization also works, but it requires an extra parameter (i.e., the
number of quantiles).

67

4.2.5 Learning Rules in Other Logical Forms

While CRR learns classification rules in relaxed-CNF form, we can leverage this
framework for learning classification rules in other logical forms, for example, CNF
and DNF. To learn a CNF rule, we set ηl = 1 and ηc = k, which converts a relaxed-
CNF to a CNF formula. Moreover, to learn a DNF rule, we first complement the
class label of all samples, learn a CNF rule by setting the parameters as described
and finally negate the learned rule, which we have discussed elaborately in Chapter 3.

4.3 Empirical Performance Analysis
We implement a prototype of CRR based on the Python API for CPLEX and

conduct an extensive empirical analysis to understand the behavior of CRR on
real-world instances. The objective of our experimental evaluation is to answer the
following questions:

1. How do the accuracy and training time for CRR behave vis-a-vis state-of-the-art
classifiers on large datasets arising in machine learning problems in practice?

2. Can CRR generate sparse rules compared to that of other rule-based models?

3. How do the training time, accuracy, and rule size vary with model hyper-
parameters?

In summary, relaxed-CNF rules generated by CRR achieves higher accuracy and
more concise representation than CNF rules in most of the datasets. Moreover,
relaxed-CNF rules are shown to be sparser than decision lists with competitive
accuracy in large datasets. Finally, we show how to control the trade-off between
rule-sparsity and accuracy using the hyper-parameter λ; and between accuracy and
training time using the hyper-parameter k and size np of each mini-batch. In the
following, we give a detailed description of the experiments.

4.3.1 Experimental Setup

We perform experiments on a high-performance computer cluster, where each
node consists of E5-2690 v3 CPU with 24 cores, 96 GB of RAM. Each experiment

68

is run on four cores of a node with 16 GB memory. We compare the performance of
CRR with state-of-the-art classifiers, e.g. IMLI (Chapter 3), RIPPER [38], BRS [188],
random forest (RF), support vector classifier (SVC), nearest neighbors classifiers
(k-NN), and l1 penalized logistic regression (LR). Among them, IMLI, BRS, and
RIPPER are rule-based classifiers. In particular, IMLI generates classification rules
in CNF using a MaxSAT-based formulation and we use Open-WBO [119] as the
MaxSAT solver for IMLI. We compare with propositional rule learning algorithm
RIPPER, which is implemented in WEKA [67] and generates classification rules
in the form of decision lists. BRS is a Bayesian framework for generating rule
sets expressed as DNF. For other classifiers, we use the Scikit-learn module of
Python [138]. For all classifiers, we set the training cut-off time to 1500 seconds.

We consider a comparable number of hyper-parameter choices for each classifier.
Specifically for CRR, we choose the data-fidelity parameter λ ∈ {0.5, 0.67, 0.84, 0.99},
the number of clauses k ∈ {1, 2, 3}, the relative size of mini-batch np

n
∈ {0.25, 0.50, 0.75},

and the number of iterations τ ∈ {2, 4, 8, 16}. We learn the value of ηc and ηl from
the dataset as described in Chapter. 4.2.2. In CPLEX, we set the maximum solving
time of the LP solver to 1000 seconds (1000

τ
seconds for each iteration) and the

remaining 500 seconds is allotted to construct the MLIP instances, parse the solu-
tions and execute other auxiliary tasks of the learning algorithm. We present the
current best solution of CPLEX when the solver times out while finding the optimal
solution.

We control the cut-off of the number of examples in the leaf node in the case
of RF and RIPPER. For SVC, k-NN, and LR we discretize the regularization
parameter on a logarithmic grid. For BRS, we vary the max clause-length ∈ {3, 4, 5},
support ∈ {5, 10, 15}, and two other parameters s ∈ {100, 1000, 10000} and ρ ∈
{0.9, 0.95, 0.99}. For IMLI, we consider λ ∈ {1, 5, 10} and k ∈ {1, 2, 3} and vary the
number of batches τ such that each batch has at least 32 samples and at most 512
samples.

4.3.2 Experimental Results

In the following, we first discuss empirical results of rule-based classifiers, then
extend analysis to non-rule-based classifiers, and finally discuss the effect of different

69

Table 4.1: Comparisons of test accuracy, rule size and training time among different
rule-based classifiers. Every cell in the last four columns contains the test accuracy
in percentage (top value), rule size (middle value), and training time in seconds
(bottom value). In the experiments, CRR shows higher test accuracy than IMLI and
generates sparser rules than RIPPER. Number in bold denotes the best result, such
as maximum test accuracy, minimum rule size, and minimum training time among
competitive classifiers.

Dataset Size Features RIPPER BRS IMLI CRR
Heart 303 31 78.69 72.13 72.13 77.69

7 19 13 4.5
5.27s 25.07s 1.8s 122.5s

Ionosphere 351 144 88.65 91.43 89.29 91.43
8 4 8.5 20

5.87s 75.53s 2.09s 5.59s
WDBC 569 88 95.22 95.65 93.91 94.69

7.5 12 7 34.5
5.7s 630.23s 1.38s 316.32s

Magic 19020 79 84.04 74.15 71.97 81.31
115 3 24 31

15.86s 56.46s 141.2s 1012.6s
Tom’s HW 28179 910 97.4

—
95.88 97.34

36 30 4
42.73s 92.65s 1071.58s

Credit 30000 110 81.68
—

81.42 82.04
38.5 10 32

14.52s 17.66s 1021.35s
Adult 32561 144 84.31

—
82.08 84.86

94 23 18
27.61s 11.91s 1016.36s

Twitter 49999 1511 95.74
—

94.24 95.16
179.5 57 12

170.87s 238.29s 1144.66s
Weather-AUS 107696 141 84.57

—
82.83 83.34

195 7 2
121.02s 366.12s 1115.27s

Skin 245057 119 98.32
—

98.92 95.08
725 201 29

1313.19s 103.8s 825.6s

70

choices of hyper-parameters.

4.3.2.1 Performance Evaluation of CRR with Rule-based Classifiers

We conduct an assessment of performance using five-fold nested cross-validation
as in [41] and report the median of test accuracy, rule size and training time of all
rule-based classifiers in Table 4.1. Specifically, we show the dataset, the number
of samples and the number of discretized features in the first three columns in
Table 4.1. Inside each cell of column four to 11, we present the test accuracy (top
value), rule size (middle value) and training time (bottom value) of each classifier
for each dataset.

We first compare relaxed-CNF rules generated by CRR with CNF rules generated
by IMLI. In Table 4.1, relaxed-CNF rules exhibit higher prediction accuracy than
CNF rules in the majority of the datasets, showing the effectiveness of using a more
expressive representation of classification rules in capturing the decision boundary.
In addition, the generated relaxed-CNF rules are comparatively smaller than CNF
rules in terms of rule size in most of the datasets. Therefore, relaxed-CNF rules
improve upon CNF rules in terms of both prediction accuracy and rule size in the
majority of the datasets. In this context, CRR provides a trade-off between accuracy
and rule size depending on the choice of hyper-parameters and the experimental
results are discussed later in Chapter 4.3.2.3. We then compare relaxed-CNF rules
with DNF rules generated by BRS and find that relaxed-CNF rules outperform
DNF rules with respect to prediction accuracy in several datasets. At this point,
BRS fails to scale on larger datasets as shown in Table 4.1. We finally compare
relaxed-CNF rules with decision lists generated by RIPPER. In the experiments,
relaxed-CNF rules achieve comparable prediction accuracy with decision lists in most
of the datasets. In contrast, RIPPER generates very large decision lists compared to
relaxed-CNF rules in the majority of the datasets, more precisely in large datasets.
To summarize the performance of CRR among different rule-based classifiers, CRR
can generate smaller relaxed-CNF rules with better accuracy in numbers of the cases
with a couple of exceptions.

Moving focus on the training time, the non-incremental version of CRR times
out on larger instances in the experiments, potentially producing sub-optimal rules
with reduced accuracy, thereby highlighting the need for the incremental approach.

71

Table 4.2: Comparisons of test accuracy among CRR and non-rule-based classifiers.
In the experiments, CRR achieves competitive prediction accuracy in spite of being
a rule-based classifier.

Dataset LR SVC RF k-NN CRR
Heart 84.29 83.33 81.97 78.69 77.69
Ionosphere 94.29 91.43 92.96 91.43 91.43
WDBC 98.26 96.46 96.90 95.61 94.69
Magic 85.15 84.45 85.30 77.9 81.31
Tom’s HW 97.62 97.66 97.52 94.59 97.34
Credit 82.04 82.12 81.97 80.5 82.04
Adult 87.24 86.82 86.84 84.68 84.86
Twitter 96.28 96.34 96.37 — 95.16
Weather-AUS 85.71 — 85.63 — 83.34
Skin 97.21 — 99.81 — 95.08

On the other hand, the incremental version of CRR can handle most of the datasets
within the allotted amount of time. In Table 4.1, CRR takes a comparatively longer
time to generate relaxed-CNF rules in comparison with other rule-based classifiers,
e.g., RIPPER, and IMLI because of the flexible combinatorial structure of relaxed-
CNF rules. However, the testing time of CRR is insignificant (< 0.01 seconds) and
thus can be deployed in practice.

4.3.2.2 Performance Evaluation of CRR with Non-rule-based Classifiers

We compare the test accuracy of CRR with non-rule-based classifiers: LR, SVC,
RF, and k-NN and report the results in Table 4.2. In the experiments, we find that
CRR, in spite of being a rule-based classifier, is able to achieve competitive prediction
accuracy with non-rule-based classifiers. In this context, SVC, and k-NN can not
complete training within the allotted time particularly in the datasets with more
than 105 samples, while CRR can still generate relaxed-CNF rules with competitive
accuracy. Therefore, CRR shows the promise of applying rule-based classifiers in
practice with an added benefit of interpretability along with competitive accuracy.

4.3.2.3 Varying Model Parameters

In Figure 4.2, 4.3, , 4.4, and 4.5, we demonstrate the effect of varying the hyper-
parameters of CRR. To understand the effect of a single hyper-parameter, we fix the

72

0.5 0.67 0.84 0.99
data-fidelity,

60

65

70

75

80
te

st
 a

cc
 %

heart

0.5 0.67 0.84 0.99
data-fidelity,

0

10

20

ru
le

 si
ze

heart

0.5 0.67 0.84 0.99
data-fidelity,

0

250

500

750

1000

tim
e

(s
)

heart

0.5 0.67 0.84 0.99
data-fidelity,

80

90

te
st

 a
cc

 %

wdbc

0.5 0.67 0.84 0.99
data-fidelity,

20

40

60
ru

le
 si

ze

wdbc

0.5 0.67 0.84 0.99
data-fidelity,

250

300

350

400

450

tim
e

(s
)

wdbc

0.5 0.67 0.84 0.99
data-fidelity,

80

82

84

te
st

 a
cc

 %

adult

0.5 0.67 0.84 0.99
data-fidelity,

0

5

10

15

20

ru
le

 si
ze

adult

0.5 0.67 0.84 0.99
data-fidelity,

0.3

0.4

0.5

tim
e

(s
)

+1.012e3 adult

Figure 4.2: Effect of data-fidelity λ on test accuracy, rule size, and training time in
CRR.

values of other hyper-parameters to a default choice where the default choice results
in the most accurate rule.

Varying data-fidelity parameter (λ): In Figure 4.2, as we increase data-fidelity
parameter λ in the objective function in Eq. 4.1a and Eq. 4.2, more priority is given
to the prediction accuracy than the sparsity of the rules. In most of the datasets,
we similarly observe an increase in accuracy and also an increase in the size of the
rules when λ is higher. This suggests that improved interpretability can often come
at a minor cost in accuracy. In addition, we find an increase in training time for
most of the datasets indicating that the MILP query usually takes a longer time to
find the solution when more priority is given on the prediction accuracy.

Varying the number of clauses (k): In Figure 4.3, as we increase k, CRR allows
the generated rules to capture the variance in the given dataset more effectively, that
results in higher accuracy in most of the datasets. The rule size also increases as we
learn more clauses. In addition, the training time increases, that can be reasoned

73

1 2 3
#clause, k

70

75

80

te
st

 a
cc

 %
heart

1 2 3
#clause, k

5

10

15

20

25

ru
le

 si
ze

heart

1 2 3
#clause, k

0

200

400

600

tim
e

(s
)

heart

1 2 3
#clause, k

93

94

95

96

te
st

 a
cc

 %

wdbc

1 2 3
#clause, k

10

15

20
ru

le
 si

ze

wdbc

1 2 3
#clause, k

100

200

300

tim
e

(s
)

wdbc

1 2 3
#clause, k

60

70

80

te
st

 a
cc

 %

adult

1 2 3
#clause, k

20

25

30

35

40

ru
le

 si
ze

adult

1 2 3
#clause, k

1015

1020

1025

tim
e

(s
)

adult

Figure 4.3: Effect of the number of clause k on test accuracy, rule size, and training
time in CRR.

by the fact that the number of constraints in the MILP formulation is linear with
k. Thereby, the number of clauses k provides a control over the accuracy of the
generated rule and training time.

Relative size of the mini-batch: In Figure 4.4, we vary the relative size of
the mini-batch np

n
to observe its effect on the accuracy and the size of the rules.

In most datasets, the accuracy increases when more samples are considered in the
mini-batch, costing higher training time. Moreover, the size of the generated rule
increases as np

n
increases, that can be supported by the increase in the variance of

the samples in the mini-batch.

Varying the number of iterations (τ): In Figure 4.5, as we allow more iterations
in the learning process, we find an increase in accuracy in most datasets. The training
time also increases with τ because CRR is required to solve in total τ queries. We
also observe an increase in rule size in most datasets. The reason is that the objective
function in the incremental mini-batch approach in Eq. 4.2 does not put a restriction

74

0.25 0.5 0.75
mini-batch size, np

n

74

76

78

80

82
te

st
 a

cc
 %

heart

0.25 0.5 0.75
mini-batch size, np

n

6

8

10

12

ru
le

 si
ze

heart

0.25 0.5 0.75
mini-batch size, np

n

0

50

100

150

200

tim
e

(s
)

heart

0.25 0.5 0.75
mini-batch size, np

n

93

94

95

96

te
st

 a
cc

 %

wdbc

0.25 0.5 0.75
mini-batch size, np

n

5

10

15

20

ru
le

 si
ze

wdbc

0.25 0.5 0.75
mini-batch size, np

n

100

200

300

tim
e

(s
)

wdbc

0.25 0.5 0.75
mini-batch size, np

n

40

60

80

te
st

 a
cc

 %

adult

0.25 0.5 0.75
mini-batch size, np

n

20

40

60

ru
le

 si
ze

adult

0.25 0.5 0.75
mini-batch size, np

n

1014

1016

1018

1020

tim
e

(s
)

adult

Figure 4.4: Effect of mini-batch size on test accuracy, rule size, and training time in
CRR.

on the size of the rules, rather on the change of rules in consecutive iterations. In
addition, the learned values of the thresholds ηc and ηl in one iteration are not
carried to the MILP query in the next iteration, that may cause an increase of rule
size.

4.4 Chapter Summary
We discuss an efficient combinatorial framework, called CRR, for learning relaxed-

CNF classification rules. Relaxed-CNF rules are more expressive than CNF/DNF
rules. CRR uses a novel integration of mini-batch learning procedure with the MILP
framework to learn sparse relaxed-CNF rules. Our experimental results demonstrate
that CRR is able to learn relaxed-CNF rules with higher accuracy and more concise
representation than CNF rules. Moreover, the generated rules are sparser than
decision lists in large datasets.

75

2 4 8 16
#iteration,

74

76

78

80

82

te
st

 a
cc

 %

heart

2 4 8 16
#iteration,

10

15

20

ru
le

 si
ze

heart

2 4 8 16
#iteration,

200

300

400

tim
e

(s
)

heart

2 4 8 16
#iteration,

94.5

95.0

95.5

96.0

te
st

 a
cc

 %

wdbc

2 4 8 16
#iteration,

5

10

15

20

ru
le

 si
ze

wdbc

2 4 8 16
#iteration,

400

600

800

1000

tim
e

(s
)

wdbc

2 4 8 16
#iteration,

84.00

84.25

84.50

84.75

te
st

 a
cc

 %

adult

2 4 8 16
#iteration,

16

18

20

ru
le

 si
ze

adult

2 4 8 16
#iteration,

1010

1012

1014

1016

tim
e

(s
)

adult

Figure 4.5: Effect of the number of iterations on test accuracy, rule size, and training
time in CRR.

76

Part III

Fairness in Machine Learning

77

In Chapter 5, we discuss an SSAT-based framework to formally verify the fairness
of finite classifiers encoded as Boolean formulas. In Chapter 6, we handle feature
correlations in fairness verification and discuss a tractable fairness verification of
linear classifiers.

78

Chapter 5

Fairness Verification using SSAT
We discuss formal fairness verification problem in machine learning where we

verify the bias of a classifier given the probability distribution of features. To
verify fairness as a model property, several probabilistic fairness verifiers such as
FairSquare [4] and VeriFair [15] have been proposed. Though FairSquare and VeriFair
are robust and have asymptotic convergence guarantees, we observe that they scale
up poorly with the size of inputs and also do not generalize to non-Boolean and
compound sensitive features. In contrast to the probabilistic verifiers, another line
of work, referred to as sample-based verifiers, has focused on the design of testing
methodologies on a given fixed data sample [59, 17]. Since sample-based verifiers
are dataset-specific, they generally do not provide robustness over the distribution.

Thus, a unified formal framework to verify different fairness metrics of a clas-
sifer, which is scalable, capable of handling compound sensitive groups, robust with
respect to the test data, and operational on real-life datasets and fairness-enhancing
algorithms, is missing in the literature.

Contribution. We discuss model verifying different fairness metrics as a SSAT
problem. We primarily focus on reductions to the exist-random quantified fragment
of SSAT, which is also known as E-MAJSAT [106]. Our choice of SSAT as a target
formulation is motivated by the recent algorithmic progress that has yielded efficient
SSAT tools [98, 99].

Our contributions are summarised below:

• We discuss a unified SSAT-based approach, Justicia, to verify independence
and separation metrics of group fairness metrics for different datasets and
classifiers.

79

• Unlike earlier probabilistic verifiers, namely FairSquare and VeriFair, Justicia
verifies fairness for compound and non-Boolean sensitive features.

• Our experiments validate that our method is more accurate and scalable than
the probabilistic verifiers, such as FairSquare and VeriFair, and more robust
than the sample-based empirical verifiers, such as AIF360.

We illustrate the contribution of this chapter using an example scenario.

Example 5.0.1. Let us consider a classification problem (Figure 5.1) of deciding
the eligibility for health insurance depending on the fitness and income of individuals
of different age groups (20-40 and 40-60). Typically, incomes of individuals increase
as their ages increase while their fitness deteriorates (Figure 5.1a). We assume that
the relation of income and fitness depends on ages as per the Normal distributions
in Figure 5.1b. Now, if we train a decision tree [129] to decide the eligibility of an
individual to get a health insurance given three features: fitness, income and age,
we observe that the ‘optimal’ decision tree (ref. Figure 5.1c) does not predict based
on the sensitive feature age. However, a fairness verifier, such as Justicia, would
verify that the decision tree outputs positive prediction to an individual above and
below 40 years with probabilities 0.18 and 0.72 respectively (Figure 5.1d). This
simple example demonstrates that even if a classifier does not explicitly learn to
differentiate on the basis of a sensitive feature, it discriminates different age groups
due to the utilitarian sense of accuracy that it tries to optimize.

5.1 An SSAT-based Fairness Verifier
In this section, we present Justicia, which is an SSAT-based framework for

verifying group and causal fairness metrics. Given a binary classifierM, a probability
distribution over features (X,A, Y) ∼ D, and a target fairness metric f(M,D), our
goal is to estimate the fairness f(M,D) of the classifierM given the distribution D
according to the fairness definition. Additionally, if a fairness threshold ε ∈ [0, 1]
is provided, Justicia verifies whether the classifier is ε-fair by comparing f with ε
(refer to Chapter 2). In Justicia, we focus on classifiers that can be represented as a
CNF formula defined over a set of Boolean variables. Additionally, for each variable,

80

age

fitness income

Ŷ

(a) Dependency
among features and
prediction

0.0 0.5 1.0
fitness

0.0 0.5 1.0
income

age = young age = elderly

(b) Age-dependent distributions of non-sensitive fea-
tures

fitness
≥

0.61

income
≥

0.29

income
≥

0.69

Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0

Y N

Y N Y N

(c) Trained decision tree

age ≥ 40 age < 400
0.2
0.4
0.6

Sensitive groups

Pr
[Ŷ

=
1]

(d) Group specific conditional prob-
ability of the classifier’s positive pre-
diction

Figure 5.1: A trained decision tree to learn the eligibility for health insurance using
age-dependent fitness and income indicators. This classifier makes unfair prediction
to individuals with age above 40.

we query the distribution D to derive the marginal probability of the variable to
be assigned to 1. In this section, we discuss two equivalent approaches for fairness
verification based on SSAT-based encodings: enumeration approach and inference
approach. In both approaches, we verify fairness with the presence of compound
sensitive groups. We then provide a theoretical analysis for a high-probability error
bound on the fairness metric and conclude with an extension of Justicia in practical
settings.

5.1.1 Enumeration Approach using RE-SSAT encoding

In order to estimate f(M,D) in the enumeration approach, the key idea is to
compute the conditional probability of positive prediction of the classifier, Pr[Ŷ =
1|A = a], for the compound sensitive group A = a by solving an appropriately

81

designed SSAT formula. For simplicity, we initially make assumptions on the classifier
M and discuss practical relaxations later in this section. We first assumeM to be
represented as a CNF formula, denoted by φ

Ŷ
, such that the prediction Ŷ = 1 when

φ
Ŷ
is satisfied and Ŷ = 0 otherwise. Additionally, all features X ∪A are assumed

to be Boolean variables. Finally, we consider independence probability assumption
of non-sensitive features X, where pi , Pr[Xi = 1] is the marginal probability of Xi.

Now, we define an RE-SSAT formula Φa to compute the conditional probability
Pr[Ŷ = 1|A = a] using the probability of satisfaction of Φa. In the prefix of Φa, all
non-sensitive features X are assigned randomized quantifiers and they are followed
by sensitive features A with existential quantifiers. In addition, the CNF formula
φ in the SSAT formula Φa is constructed such that φ encodes the event inside the
target probability Pr[Ŷ = 1|A = a]. In order to specify the sensitive group A = a,
we take the conjunction of the Boolean variables in A that symbolically specifies
the compound sensitive group A = a. For example, let us consider two sensitive
features: race ∈ {White, Colour} and sex ∈ {male, female} by Boolean variables R
and S, respectively. Hence, the compound groups [White,male] and [Colour, female]
are represented by R ∧ S and ¬R ∧ ¬S, respectively. Thus, the RE-SSAT formula
for computing the probability Pr[Ŷ = 1|A = a] is

Φa := Rp1X1, . . . ,

Rpm1Xm1︸ ︷︷ ︸
non-sensitive features

,∃A1, . . . ,∃Am2︸ ︷︷ ︸
sensitive features

, φ
Ŷ
∧ (A = a).

In the RE-SSAT formula Φa, existentially quantified variables {A1, . . . , Am2} are
assigned Boolean values according to the constraint A = a.1 Next, an SSAT solver
computes the probability Pr[Φa] by considering the random values of {X1, . . . , Xm1}
while fixing the assignment of {A1, . . . , Am2}. Therefore, Pr[Φa] equals the condi-
tional probability of positive prediction of the classifier, Pr[Ŷ = 1|A = a], for the
sensitive group A = a.

For simplicity, we have described the computation of conditional probability
Pr[Ŷ = 1|A = a] without considering the correlation among sensitive and non-
sensitive features. In reality, correlation exists among these features (for a detailed
study on feature correlations in fairness verification, we refer to Chapter 6). As a
result, non-sensitive features may have different conditional distributions for different

1An RE-SSAT formula becomes an R-SSAT formula when the assignment to the existential
variables are fixed.

82

sensitive groups. For a non-sensitive feature Xi, we incorporate its conditional
probability in the RE-SSAT encoding by setting pi = Pr[Xi = 1|A = a] instead
of the independent probability Pr[Xi = 1]. Next, we illustrate this enumeration
approach in Example 5.1.1.

Example 5.1.1 (RE-SSAT encoding). We illustrate the RE-SSAT encoding for
calculating the probability of positive prediction for the sensitive group age ≥ 40
in the decision tree of Figure 5.1. We assign three Boolean variables F, I, J for
three nodes in the decision tree, where literal F, I, J denote fitness ≥ 0.61, income
≥ 0.29, and income ≥ 0.69, respectively. We consider another Boolean variable A
where the literal A represents the sensitive group age ≥ 40 and ¬A denotes age
< 40. Thus, the CNF formula for the decision tree is (¬F ∨ I) ∧ (F ∨ J). From
the distribution in Figure 5.1, we get Pr[F] = 0.41,Pr[I] = 0.93, and Pr[J] = 0.09.
Given this information, we calculate the probability of positive prediction for the
sensitive group age ≥ 40 by solving the following RE-SSAT formula:

ΦA := R0.41F,
R0.93I,

R0.09J,∃A, (¬F ∨ I) ∧ (F ∨ J) ∧ A.

From the solution to this SSAT formula, we get Pr[ΦA] = 0.43. Similarly, to
calculate the probability of positive prediction for the group age < 40, we replace
the unit clause2 A with ¬A in the CNF formula in ΦA and construct another SSAT
formula Φ¬A.

Φ¬A := R0.41F,

R0.93I,

R0.09J,∃A, (¬F ∨ I) ∧ (F ∨ J) ∧ ¬A

For Φ¬A, the solution Pr[Φ¬A] = 0.43 is similarly derived from an SSAT solver.
Therefore, if Pr[F],Pr[I],Pr[J] are computed independently of the sensitive feature
A, both age groups achieve an equal probability of positive prediction as the sensitive
feature is not explicitly present in the classifier.

However, there is an implicit bias in the data distribution for different sensitive
groups and the classifier unintentionally learns it. To capture this implicit bias, we
calculate conditional probabilities Pr[F |A] = 0.01,Pr[I|A] = 0.99, and Pr[J |A] =
0.18 from the distribution for group age ≥ 40 in Figure 5.1. Providing the conditional

2A unit clause is a clause with a single literal.

83

probabilities, we construct a modified SSAT formula Φ′A and compute Pr[Φ′A] = 0.18
for age ≥ 40.

Φ′A := R0.01F,

R0.99I,

R0.18J,∃A, (¬F ∨ I) ∧ (F ∨ J) ∧ A

For the sensitive group age< 40, we similarly obtain Pr[F |¬A] = 0.82,Pr[I|¬A] =
0.88, Pr[J |¬A] = 0.01, construct the modified formula Φ′¬A and get Pr[Φ′¬A] = 0.72.

Φ′¬A := R0.82F,

R0.88I,

R0.01J,∃A, (¬F ∨ I) ∧ (F ∨ J) ∧ ¬A

In the later case with correlations among sensitive and non-sensitive features,
the RE-SSAT encoding detects the discrimination of the classifier among different
sensitive groups, where the classifier is more biased towards the younger group with
age < 40 than the elderly group with age ≥ 40.

5.1.1.1 Measuring Fairness Metrics

As we compute Pr[Φa] = Pr[Ŷ = 1|A = a] by solving the SSAT formula Φa, we
use Pr[Φa] to measure different fairness metrics. To this end, we compute Pr[Φa]
for all compound groups a ∈ A by solving an exponential number (with m2) of
SSAT formulas. We elaborate this enumeration approach, namely Justicia_enum, in
Algorithm 5 (Line 1–8).

To measure the disparate impact of a classifier, we calculate the ratio between
the minimum and the maximum conditional probability of positive prediction of the
classifier, which are mina∈A Pr[Φa] and maxa∈A Pr[Φa], respectively. We compute
statistical parity by taking the difference between maxa∈A Pr[Φa] and mina∈A Pr[Φa].

Moreover, to compute equalized odds, we call Justicia twice, one for the dis-
tribution D conditioned on Y = 1 and another for Y = 0. In both calls, we
compute maxa Pr[Ŷ = 1|A = a, Y = y] − mina Pr[Ŷ = 1|A = a, Y = y] for
y ∈ {0, 1} and take the maximum difference as the value of equalized odds. For
measuring path-specific causal fairness, we compute maxa Pr[Ŷ = 1|A = a,Z] and
mina Pr[Ŷ = 1,Z|A = a,Z] by conditioning the distribution D by mediator features
Z and take their difference. Thus, Justicia_enum allows us to compute different
group and causal fairness metrics using a unified algorithmic framework.

84

Algorithm 5 Justicia: An SSAT-based Fairness Verifier
1: function Justicia_enum(X,A, Ŷ)
2: φ

Ŷ
:= CNF(Ŷ = 1)

3: for all a ∈ A do
4: pi ← Pr[Xi = 1|A = a],∀Xi ∈ X
5: φ := φ

Ŷ
∧ (A = a)

6: Φa := Rp1X1, . . . ,

Rpm1Xm1 ,∃A1, . . . ,∃Am2 , φ
7: Pr[Φa]← SSAT(Φa) . returns probability
8: return maxa∈A Pr[Φa],mina∈A Pr[Φa]

9: function Justicia_infer(X,A, Ŷ)
10: φ

Ŷ
:= CNF(Ŷ = 1)

11: pi ← Pr[Xi = 1],∀Xi ∈ X
12: ΦER := ∃A1, . . . ,∃Am2 ,

Rp1X1, . . . ,

Rpm1Xm1 , φŶ
13: Φ′ER := ∃A1, . . . ,∃Am2 ,

Rp1X1, . . . ,

Rpm1Xm1 ,¬φŶ
14: return SSAT(ΦER), 1− SSAT(Φ′ER)

5.1.2 Inference Approach using ER-SSAT Encoding

In most practical problems, there can be exponentially many compound sensitive
groups due to the combination of categorical sensitive features. As a result, the
enumeration approach may suffer from scalability issues due to the exponential
number of calls to the SSAT solver. To this end, we discuss an efficient SSAT
encoding, where we make two SSAT calls, one for inferring the the most favored
sensitive group with the maximum conditional probability of positive prediction
of the classifier and another for inferring the least favored sensitive group with the
minimum conditional probability of positive prediction of the same classifier. As
discussed above, these two probabilities are sufficient to measure different group and
causal fairness metrics.

5.1.2.1 Inferring the Most Favored Sensitive Group

In the prefix of an SSAT formula Φ, the order of quantified variables carries
distinct interpretation of Pr[Φ]. In an ER-SSAT formula, Pr[Φ] is the maximum
satisfying probability of Φ over the optimal assignment of existentially quantified
variables given the randomized quantified variables (by Semantic 2, Sec. 2.1.5). In
this chapter, we leverage this property to compute the most favored sensitive group
with the highest probability of positive prediction of the classifier. In particular, we

85

consider the following ER-SSAT formula:

ΦER := ∃A1, . . . ,∃Am2 ,

Rp1X1, . . . ,

Rpm1Xm1 , φŶ . (5.1)

The CNF formula φ
Ŷ

in ΦER is the CNF translation of the classifier Ŷ = 1
without any specification of the compound sensitive group. Therefore, as we solve
ΦER, we find the optimal assignment to the existentially quantified variables A1 =
amax

1 , . . . , Am2 = amax
m2 for which the probability of satisfaction of the ER-SSAT

formula Pr[ΦER] becomes maximum. Thus, we compute the most favored group
amax , [amax

1 , . . . , amax
m2] achieving the highest probability of positive prediction of

the classifier.

5.1.2.2 Inferring the Least Favored Sensitive Group

In order to infer the least favored sensitive group of the classifier, we compute the
minimum conditional probability of positive prediction of the classifier with respect
to all sensitive groups given the random values of the non-sensitive features. To this
end, we solve a ‘universal-random’ (UR) SSAT formula with universal quantifiers
over sensitive features and randomized quantification over non-sensitive features (by
Semantic 3, Sec. 2.1.5).

ΦUR := ∀A1, . . . ,∀Am2 ,

Rp1X1, . . . ,

Rpm1Xm1 , φŶ (5.2)

Solving an UR-SSAT formula raises several practical issues and thus, there is an
unavailability of an UR-SSAT solver. To resolve this problem, we leverage the duality
between UR-SSAT and ER-SSAT formulas, where we solve an UR-SSAT formula on
the CNF φ using the solution of an ER-SSAT formula on the complemented CNF
¬φ [106]. More specifically, we solve the following ER-SSAT formula for finding the
least favored sensitive group.

Φ′ER := ∃A1, . . . ,∃Am2 ,

Rp1X1, . . . ,

Rpm1Xm1 , ¬φŶ (5.3)

In Lemma 9, we discuss the duality between UR-SSAT and ER-SSAT formulas.

Lemma 9. Given Eq. (5.2) and (5.3), Pr[ΦUR] = 1− Pr[Φ′ER].

86

Proof of Lemma 9. Both ΦUR and Φ′ER have random quantified variables in the
identical order in the prefix. According to the definition of SSAT formulas,

Pr[ΦUR] = min
a1,...,am2

Pr[φ
Ŷ

] and Pr[Φ′ER] = max
a1,...,am2

Pr[¬φ
Ŷ

],

where Pr[φ
Ŷ

] and Pr[¬φ
Ŷ

] are both computed for the random values of non-
sensitive features X.

Therefore, we derive the following duality between ER-SSAT and UR-SSAT,

Pr[Φ′ER] = max
a1,...,am2

Pr[¬φ
Ŷ

]

= min
a1,...,am2

(1− Pr[φ
Ŷ

])

= 1− min
a1,...,am2

Pr[φ
Ŷ

]

= 1− Pr[ΦUR].

As we solve Φ′ER, we obtain the optimal assignment to the sensitive features amin ,

[amin1 , . . . , aminm2] that maximizes Φ′ER. If p is the maximum satisfying probability of
Φ′ER, then according to Lemma 9, 1− p is the minimum satisfying probability of ΦUR;
which is also the minimum probability of positive prediction of the classifier. We
present the algorithm for the inference approach, namely Justicia_infer in Algorithm 5
(Line 9–14).

In the ER-SSAT formula in Eq. (5.3), we need to negate the classifier φ
Ŷ
to

another CNF formula ¬φ
Ŷ
. The naïve approach of negating one CNF to another

CNF generates an exponential number of new clauses. Here, we apply Tseitin
transformation for the negation, which increases the number of clauses linearly while
introducing a linear number of new variables [180]. As an alternative approach, we
directly encode the binary classifierM for the negative class label Ŷ = 0 as a CNF
formula and pass it to Φ′ER, whenever it is possible. The latter approach is generally
more efficient than the former approach as the resulting CNF is often smaller.

Example 5.1.2 (ER-SSAT encoding). Here, we illustrate the ER-SSAT encoding for
inferring the most favored and the least favored sensitive group of a classifier in the
presence of compound sensitive groups. As the example in Figure 5.1 is degenerate for
this purpose, we introduce another Boolean sensitive feature ‘sex’ ∈ {male, female}.

87

We consider a Boolean variable S for sex where the literal S denotes sex = male.
With this new sensitive feature, let the classifier beM , (¬F∨I∨S)∧(F∨J), where
variables corresponding to sensitive features F, I, and J have same distributions as
discussed in Example 5.1.1. Hence, we obtain the following ER-SSAT formula ofM
to infer the most favored sensitive group:

ΦER = ∃S,∃A, R0.41F,

R0.93I,

R0.09J, (¬F ∨ I ∨ S) ∧ (F ∨ J).

As we solve ΦER, we infer that the optimal assignment to the existential variables
σ(S) = 1, σ(A) = 0, which implies that ‘male individuals with age < 40’ is the most
favored group with probability of positive prediction computed as Pr[ΦER] = 0.46.
Similarly, to infer the least favored group, we negate the CNF translation of the
classifierM to obtain the following ER-SSAT formula:

Φ′ER = ∃S,∃A, R0.41F,

R0.93I,

R0.09J, ¬((¬F ∨ I ∨ S) ∧ (F ∨ J)).

Solving Φ′ER, we learn the optimal assignment σ(S) = 0, σ(A) = 0 and Pr[Φ′ER] =
0.57. Thus, ‘female individuals with age < 40’ constitute the least favored group
with probability of positive prediction as 1 − 0.57 = 0.43. Thus, Justicia_infer
allows us to infer the most and least favored sensitive groups and the corresponding
discrimination.

We next prove the equivalence of Justicia_enum and Justicia_infer in Lemma 10.

Lemma 10. Let Φa be an RE-SSAT formula for computing the probability of positive
prediction of a classifier corresponding to the sensitive group A = a. Additionally,
for the same classifer, let ΦER be an ER-SSAT formula for inferring the most favored
sensitive group and ΦUR be a UR-SSAT formula for inferring the least favored sensitive
group. Therefore, maxa∈A Pr[Φa] = Pr[ΦER] and mina∈A Pr[Φa] = Pr[ΦUR].

Proof of Lemma 10. It is trivial that the probability of positive prediction of the
classifier for the most favored group amax is the maximum computed probability of
all compound groups a ∈ A. Similar argument holds for the least favored group
amin, which obtains the minimum probability of positive prediction of the classifier
among all compound groups a ∈ A.

88

By construction of the SSAT formulas, Pr[ΦER] and Pr[ΦUR] are the probabilities
corresponding to the groups A = amax and A = amin, respectively. Now, since
Pr[Φa] is the probability for the group A = a, we derive the following.

max
a∈A

Pr[Φa] = Pr[ΦER] and min
a∈A

Pr[Φa] = Pr[ΦUR]

5.1.3 Practical Settings

We now relax the assumptions of Justicia on an access to Boolean classifiers and
Boolean features, and extend Justicia to verify fairness metrics for more practical
settings of decision trees, linear classifiers, and continuous features.

5.1.3.1 Extension to Decision Trees and Linear Classifiers

In the SSAT approach, we assume that the classifierM is represented as a CNF
formula. We extend Justicia beyond CNF classifiers to decision trees and linear
classifiers, which are widely used in the fairness studies [196, 147, 199].

Binary decision trees are trivially encoded as CNF formulas. In the binary
decision tree, each node in the tree is considered as a literal. A path from the root to
the leaf is a conjunction of literals and thus, a clause. The tree itself is a disjunction
of all paths and thus, a DNF (Disjunctive Normal Form). In order to derive a CNF
of a decision tree, we first construct a DNF by including all paths terminating at
leaves with negative class label (Ŷ = 0) and then complement the DNF to CNF
using De Morgan’s rule.

Linear classifiers on Boolean features are encoded into CNF formulas using
pseudo-Boolean encoding [141]. We consider a linear classifier WX + b ≥ 0 on
Boolean features X with weights W ∈ R|X| and bias b ∈ R. We first normalize W
and b in [−1, 1] and then round to integers so that the decision boundary becomes
a pseudo-Boolean constraint [156]. Then we apply pseudo-Boolean constraints to
CNF translation [141] to encode the decision boundary to CNF. This encoding
usually introduces additional Boolean variables and results in a large CNF. In order
to generate a smaller CNF, we can trivially apply thresholding on the weights to

89

consider features with higher weights only. For instance, if the weight |Wi| ≤ λ

for a threshold λ ∈ R+ and Wi ∈ W, we can set Wi = 0. Thus, features with
lower weights (less important) do not appear in the encoded CNF. Moreover, all
introduced variables in this CNF translation are given existential (∃) quantification
and they appear in the inner-most position in the prefix of the SSAT formula. Thus,
the presented ER-SSAT formulas become effectively ERE-SSAT formulas.

5.1.3.2 Extension to Continuous Features

In practical problems, features are generally real-valued or categorical but classi-
fiers, which are naturally expressed as CNF (Chapter 3), are generally trained on a
Boolean abstraction of input features. In order to perform the Boolean abstraction,
each categorical feature is one-hot encoded and each real-valued feature is discretized
into a set of Boolean features (Chapter 3).

For a binary decision tree, each feature, including the continuous ones, is com-
pared against a constant at each node (except leaves) of the tree. We assign a
Boolean variable to each internal node of the tree (except leaves), where the {0, 1}
assignment to the variable decides one of the two branches to choose from the current
node.

Linear classifiers are generally trained on continuous features, where we apply
discretization in the following way. Let us consider a continuous feature Xc, where
W is its weight during training. We discretize Xc to a set B of Boolean features
and recalculate the weight of each variable in B based on W . We consider the an
interval-based approach for discretizing Xc. For each interval in the continuous
space of Xc, we consider a Boolean variable Bi ∈ B, such that Bi is assigned 1 when
the feature-value of Xc lies within the ith interval and Bi is assigned 0 otherwise.
Following that, we assign the weight of Bi to be µiW , where µi is the mean of
feature values in the ith interval. We can show that if we consider infinite number of
intervals, Xc ≈

∑
i µiBi.

5.2 Empirical Performance Analysis
In this section, we discuss the empirical studies to evaluate the performance

of Justicia in verifying different fairness metrics and algorithms. We first discuss

90

the experimental setup and the objective of the experiments and then evaluate the
experimental results.

5.2.1 Experimental Setup

We have implemented a prototype of Justicia in Python (version 3.7.3). The core
computation of Justicia relies on solving SSAT formulas using an off-the-shelf SSAT
solver. To this end, we employ the state of the art RE-SSAT solver of [98] and the
ER-SSAT solver of [99]. Both solvers output the exact satisfying probability of the
SSAT formula.

For comparative evaluation of Justicia, we have experimented with two state-of-
the-art probabilistic fairness verifiers FairSquare and VeriFair, and a sample-based
fairness measuring tool: AIF360. In the experiments, we have studied three type of
classifiers: decision tree, logistic regression classifier, and CNF learner. Decision tree
and logistic regression are implemented using scikit-learn module of Python [138] and
we use the MaxSAT-based CNF learner IMLI (Chapter 3). We have used the PySAT
library [77] for encoding the decision function of the logistic regression classifier
into a CNF formula. In our experiments, we have verified two fairness-enhancing
algorithms: reweighing algorithm [85] and optimized pre-processing algorithm [28].
We have experimented on multiple datasets containing multiple sensitive features:
the UCI3 Adult and German-credit dataset, ProPublica’s COMPAS recidivism
dataset [7], Ricci dataset [121], and Titanic dataset4.

Our empirical studies have following objectives:

1. How accurate and scalable Justicia is with respect to existing fairness verifiers:
FairSquare and VeriFair?

2. Can Justicia verify the effectiveness of different fairness-enhancing algorithms
on different datasets?

3. Can Justicia verify fairness in the presence of compound sensitive groups?

4. How robust is Justicia in comparison to sample-based tools such as AIF360 for
varying sample sizes?

3http://archive.ics.uci.edu/ml
4https://www.kaggle.com/c/titanic

91

 http://archive.ics.uci.edu/ml
https://www.kaggle.com/c/titanic

Table 5.1: Results on synthetic benchmark. ‘—’ refers that the verifier cannot
compute the metric. The number in bold denotes the best result, where the estimated
fairness metric is closest to the exact value.

Metric Exact Justicia FairSquare VeriFair AIF360
Disparate impact 0.26 0.25 0.99 0.99 0.25
Statistical parity 0.53 0.54 — — 0.54

5. How do the computational efficiencies of Justicia_infer and Justicia_enum
compare?

Our experimental studies validate that Justicia is more accurate and scalable than
the state-of-the-art verifiers: FairSquare and VeriFair. Justicia is able to verify the
effectiveness of different fairness-enhancing algorithms for multiple fairness metrics
and datasets. Justicia achieves scalable performance in the presence of compound
sensitive groups that the existing verifiers cannot handle. Justicia is also more robust
than the sample-based tools such as AIF360. Finally, Justicia_infer is significantly
efficient in terms of runtime than Justicia_enum.

5.2.2 Experimental Analysis

5.2.2.1 Accuracy: Less Than 1%-error

In order to assess the accuracy of different verifiers, we have considered the
decision tree in Figure 5.1 for which the fairness metrics are analytically computable.
In Table 5.1, we show the computed fairness metrics by Justicia, FairSquare, VeriFair,
and AIF360. We observe that Justicia and AIF360 yield more accurate estimates of
disparate impact and statistical compared against the ground truth values of fairness
metrics with less than 1% error. In contrast, FairSquare and VeriFair estimate
disparate impact to be 0.99 and thus, being unable to verify the fairness violation.
Therefore, Justicia is significantly more accurate than the existing formal verifiers:
FairSquare and VeriFair.

5.2.2.2 Scalability: 1 to 3 Orders of Magnitude Speed-up

We have tested the scalability of Justicia, FairSquare, and VeriFair on practical
benchmarks with a timeout of 900 seconds and reported the execution time of

92

Table 5.2: Scalability of different verifiers in terms of execution time (in seconds).
The number in bold refers to the best result incurring minimum execution time
among competitive verifiers. ‘—’ refers to timeout.

Classifier Dataset FairSquare VeriFair Justicia

Decision Tree

Ricci 4.8 5.3 0.1
Titanic 16 1.2 0.1

COMPAS 36.9 15.9 0.1
Adult — 295.6 0.2

Logistic Regression

Ricci — 2.2 0.2
Titanic — 0.8 0.9

COMPAS — 11.3 0.2
Adult — 61.1 1.0

race
(5)

race,
sex
(10)

race,
age
(20)

race,
sex,
age
(40)

Sensitive groups

0.0

0.2

0.4

0.6

0.8

1.0

D
is

p
ar

at
e

im
p

ac
t

race
(5)

race,
sex
(10)

race,
age
(20)

race,
sex,
age
(40)

Sensitive groups

0.00

0.05

0.10

0.15

0.20

S
ta

ti
st

ic
al

P
ar

it
y

Figure 5.2: Fairness metrics measured by Justicia for different sensitive groups in the
Adult dataset. The number within parenthesis in the xticks denotes total compound
sensitive groups, which increases due to the increasing combination of sensitive
features. For higher sensitive groups, fairness becomes worse.

these verifiers on decision tree and logistic regression in Table 5.2. We observe
that Justicia shows impressive scalability than the competing verifiers. Particularly,
among benchmarks where all three verifiers output results, Justicia is 1 to 2 orders
of magnitude faster than FairSquare and 1 to 3 orders of magnitude faster than
VeriFair. Additionally, FairSquare times out in most benchmarks. Thus, Justicia is
not only accurate but also scalable than the existing verifiers.

5.2.2.3 Verification: Detecting Compounded Discrimination in Sensitive
Groups

We have tested Justicia for datasets consisting of multiple sensitive features
and reported results in Figure 5.2. Justicia operates on datasets with even 40

93

compound sensitive groups and can potentially scale more than that while the
state-of-the-art fairness verifiers (e.g., FairSquare and VeriFair) consider a single
sensitive feature with two sensitive groups. Thus, Justicia removes an important
limitation in practical fairness verification, which was previously restricted to Boolean
sensitive groups. Additionally, in most datasets, we observe that disparate impact
decreases and thus, discrimination increases as more compound sensitive groups are
considered. For instance, when we increase the total groups from 5 to 40 in the
Adult dataset, disparate impact decreases from around 0.9 to 0.3, thereby detecting
higher discrimination. Thus, Justicia detects that the marginalized individuals of a
specific type (e.g., ‘race’) are even more discriminated and marginalized when they
also belong to a marginalized group of another type (e.g., ‘sex’).

5.2.2.4 Verification: Fairness of Algorithms on Datasets

We have experimented with two fairness-enhancing algorithms: reweighing (RW)
algorithm and optimized-preprocessing (OP) algorithm. Both of them pre-process
to remove statistical bias from the dataset. We study the effectiveness of these
algorithms using Justicia on different5 datasets each with two different sensitive
features. In Table 5.3, we report different fairness metrics on logistic regression
and decision tree. We observe that Justicia verifies fairness improvement as the bias
mitigating algorithms are applied. For example, for the Adult dataset with ‘race’ as
the sensitive feature, disparate impact increases from 0.23 to 0.85 for applying the
reweighing algorithm on logistic regression classifier. In addition, statistical parity
decreases from 0.09 to 0.01, and equalized odds decreases from 0.13 to 0.03, thereby
showing the effectiveness of reweighing algorithm in all three fairness metrics. Justicia
also finds instances where the fairness algorithms fail, specially when considering the
decision tree classifier. Thus, Justicia verifies the effectiveness of different fairness
enhancing algorithms.

5.2.2.5 Robustness: Stability to Sample Size

We have empirically compared the robustness of our probabilistic fairness verifier
Justicia with dataset-centric verifier AIF360 by varying the sample-size and reporting
the standard deviation of different fairness metrics. In Figure 5.3, AIF360 shows
higher standard deviation for lower sample-size and the value decreases as the

94

Ta
bl
e
5.
3:

Ve
rifi

ca
tio

n
of

di
ffe

re
nt

fa
irn

es
s
en
ha

nc
in
g
al
go
rit

hm
s
fo
rm

ul
tip

le
da

ta
se
ts

an
d
cla

ss
ifi
er
s
us
in
g

Ju
st

ici
a.

N
um

be
rs

in
bo

ld
re
fe
r
to

fa
irn

es
s
im

pr
ov
em

en
t
co
m
pa

re
d
ag
ai
ns
t
th
e
un

pr
oc
es
se
d
(o
rig

.)
da

ta
se
t.

RW
an

d
O
P

re
fe
r
to

re
we

ig
hi
ng

an
d

op
tim

iz
ed
-p
re
pr
oc
es
sin

g
al
go
rit

hm
re
sp
ec
tiv

el
y.

C
la
ss
ifi
er

D
at
as
et
→

A
du

lt
C
O
M
PA

S

Se
ns
iti
ve
→

R
ac
e

Se
x

R
ac
e

Se
x

A
lg
or
ith

m
→

or
ig
.

RW
O
P

or
ig
.

RW
O
P

or
ig
.

RW
O
P

or
ig
.

RW
O
P

Lo
gi
st
ic

re
gr
es
sio

n
D
isp

ar
te

im
pa

ct
0.

23
0.

85
0.

59
0.

03
0.

61
0.

62
0.

34
0.

36
0.

47
0.

48
0.

80
0.

74
St
at
ist

ic
al

pa
rit

y
0.

09
0.

01
0.

05
0.

16
0.

04
0.

03
0.

39
0.

33
0.

21
0.

23
0.

09
0.

10
Eq

ua
liz

ed
od

ds
0.

13
0.

03
0.

10
0.

30
0.

02
0.

06
0.

38
0.

33
0.

18
0.

17
0.

19
0.

07

D
ec
isi
on

tr
ee

D
isp

ar
te

im
pa

ct
0.

82
0.

60
0.

67
0.

00
0.

73
0.

95
0.

61
0.

58
0.

57
0.

94
0.

78
0.

63
St
at
ist

ic
al

pa
rit

y
0.

02
0.

05
0.

04
0.

14
0.

05
0.

01
0.

18
0.

17
0.

17
0.

02
0.

09
0.

18
Eq

ua
liz

ed
od

ds
0.

07
0.

05
0.

03
0.

47
0.

03
0.

04
0.

17
0.

16
0.

16
0.

07
0.

05
0.

16

95

0.2 0.4 0.6 0.8 1.0
Sample size

0.00

0.01

0.02

0.03

0.04

0.05

0.06
S

td
.

of
D

is
p

ar
at

e
Im

p
ac

t Justicia

AIF360

0.2 0.4 0.6 0.8 1.0
Sample size

0.000

0.005

0.010

0.015

0.020

0.025

0.030

S
td

.
of

S
ta

ti
st

ic
al

P
ar

it
y

Justicia

AIF360

Figure 5.3: Standard deviation in estimation of disparate impact (DI) and stat.
parity (SP) for different sample sizes (sample size = 1 refers to the entire dataset).
Justicia is more robust with variation of sample size than AIF360. Sample size = 1
denotes the full dataset considering all samples.

5 10 15 20 25 30 35 40
Total sensitive groups

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

T
im

e
(s

ec
on

d
s)

Decision tree

infer

cond

enum

5 10 15 20 25 30 35 40
Total sensitive groups

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
(s

ec
on

d
s)

CNF learner: IMLI

infer

cond

enum

Figure 5.4: Runtime comparison of different encodings while varying total sensitive
groups in the Adult dataset.

sample-size increases. In contrast, Justicia shows significantly lower (∼ 10× to 100×)
standard deviation for different sample-sizes. The reason is that AIF360 empirically
measures on a fixed dataset whereas Justicia provides estimates over the distribution.
Thus, Justicia is more robust than the sample-based verifier AIF360.

5.2.2.6 Comparative Evaluation of Different Encodings

Both Justicia_enum and Justicia_infer have the same output according to Lemma 10.
However, Justicia_infer improves exponentially in runtime than Justicia_enum on
both decision tree and Boolean CNF classifiers as we vary the total compound
groups in Figure 5.4. Justicia_cond (Justicia_enum encoding where we consider
conditional probabilities of non-sensitive features w.r.t. sensitive groups) also has an
exponential trend in runtime similar to Justicia_enum. This analysis justifies that

96

the naïve enumeration-based approach cannot verify large-scale fairness problems
containing multiple sensitive features, and Justicia_infer is a more efficient approach
for practical use.

5.3 Chapter Summary
Formal verification of different fairness metrics of machine learning for different

datasets is an important question. Existing fairness verifiers, however, are not
scalable, accurate, and extendable to non-Boolean sensitive features. We discuss
a stochastic SAT-based approach, Justicia, that formally verifies multiple group
and causal fairness metrics for different classifiers and distributions for compound
sensitive groups. Experimental evaluations demonstrate that Justicia achieves higher
accuracy and scalability in comparison to the state-of-the-art verifiers, FairSquare
and VeriFair, while yielding higher robustness than the sample-based tools, such as
AIF360. A limitation of Justicia is the lack of consideration of feature correlations
in the SSAT-based verifier, which we alleviate in the next chapter.

97

Chapter 6

Handling Feature Correlations in
Fairness Verification

In this chapter, we extend formal fairness verification problem to a more practical
scenario by accounting for the correlation of features, which is prevalent in most
classification datasets. Existing fairness verifiers [4, 15], including Justicia in Chap-
ter 5, suffer from limited accuracy due to considering specific input distribution. For
example, they assume feature independence of non-sensitive features and consider
correlated features within a limited scope, such as conditional probabilities of non-
sensitive features with respect to sensitive features, and ignore correlations among
non-sensitive features. Thus, it is desirable to design a fairness verification framework
where the input is a probability distribution containing feature correlations.

Towards the goal of considering feature correlations in fairness verification, we
particularly focus on the verification of linear classifiers because of the significant
attention on linear classifiers in fair algorithms [143, 194, 45, 82]. In this context,
existing approaches suffer from limited scalability while verifying linear classifiers.
This is due to the encoding of linear classifiers into SSAT (Chapter 5) or SMT
formulas [4]. For example, Justicia applies pseudo-Boolean to CNF translation of
linear classifiers as a pre-processing step, and the encoding becomes large depending
on the number of features and the precision of real-valued coefficients in linear
classifiers.

Considering these two aspects, our goal in this chapter is to design a fairness
verifier particularly tailored for linear classifiers that addresses both the scalability
and accuracy challenges of existing verifiers.

Contributions. The contributions of this chapter are summarized below.

98

• Framework: We discuss a fairness verification framework, namely FVGM
(Fairness Verification with Graphical Models), for accurately and efficiently
verifying linear classifiers.

• Scalability: FVGM relies a novel stochastic subset-sum encoding for linear classi-
fiers with an efficient pseudo-polynomial solution using dynamic programming.

• Accuracy: To address feature-correlations, FVGM considers a graphical model,
particularly a Bayesian Network that represents conditional dependence (and
independence) among features in the form of a Directed Acyclic Graph (DAG).

• Experimental Results: Experimentally, FVGM is more accurate and scalable
than existing fairness verifiers; FVGM can verify group and causal fairness
metrics for multiple fairness algorithms.

6.1 Fairness Verification with Graphical Models
In this section, we present FVGM, a fairness verification framework for linear

classifiers that accounts for correlated features represented as a graphical model.
The core idea of verifying fairness of a classifier is to compute the probability of
positive prediction of the classifier with respect to all compound sensitive groups.
To this end, FVGM solves a stochastic subset sum problem, S3P, that is equivalent
to computing the probability of positive prediction of the classifier for the most and
the least favored sensitive group1. In this section, we first define S3P and present an
efficient dynamic programming solution for S3P. We then extend S3P to consider
correlated features as input. Finally, we conclude by discussing fairness verification
based on the solution of S3P.

Problem Formulation. Given a linear classifierM : (X,A)→ Ŷ and a proba-
bility distribution D of X ∪A, our objective is to compute maxa Pr[Ŷ = 1|A = a]
and mina Pr[Ŷ = 1|A = a] with respect to D. In this study, we express a linear
classifierM as

1The most (resp. least) favored sensitive group obtains the maximum (resp. minimum) proba-
bility of positive prediction of the classifier.

99

Ŷ = 1

[∑
i

WXi
Xi +

∑
j

WAj
Aj ≥ τ

]
.

Here, W denotes the weight (or coefficients) of a feature, τ denotes the bias or
the offset parameter of the classifier, and 1 is an indicator function. Hence, the
prediction Ŷ = 1 if and only if the inner inequality holds. Thus, computing the
maximum (resp. minimum) probability of positive prediction is equivalent to finding
out the assignment of Aj ’s for which the probability of satisfying the inner inequality
is highest (resp. lowest). We reduce this computation into an instance of S3P. To
perform this reduction, we assume weight W and bias τ as integers, and features
X ∪A as Boolean. In Sec. 6.1.5, we relax these assumptions and extend to the
practical settings.

6.1.1 Stochastic Subset Sum Problem

Now, we formally describe the specification and semantics of S3P. S3P operates
on a set of Boolean variables B = {Bi}ni=1 ∈ {0, 1}n, where Wi ∈ Z is the weight of
Bi, and n , |B|. Given a constant threshold τ ∈ Z, S3P computes the probability of
a subset of B with sum of weights of non-zero variables to be at least τ . Formally,

S(B, τ) , Pr
[∑

i

WiBi ≥ τ
]
.

Aligning with terminologies in stochastic satisfiability (SSAT) [106], we categorize
the variables B into two types: (i) chance variables that are stochastic and have
an associated probability of being assigned to 1 and (ii) choice variables that we
optimize while computing S(B, τ). To specify the category of variables, we consider
a quantifier Qi ∈ {

Rpi ,∃,∀} for each Bi. Elaborately, Rp is a random quantifier
corresponding to a chance variable B ∈ B, where p , Pr[B = 1]. In contrast, ∃ is
an existential quantifier corresponding to a choice variable B such that a Boolean
assignment of B maximizes S(B, τ). Finally, ∀ is an universal quantifier for a choice
variable B that fixes an assignment to B that minimizes S(B, τ).

Now, we formally present the semantics of S(B, τ) provided that each variable
Bi has weight Wi and quantifier Qi. Let B[2 : n] , {Bj}nj=2 be the subset of B
without the first variable B1. Then S(B, τ) is recursively defined as:

100

S(B, τ) =

1[τ ≤ 0], if B = ∅

S(B[2 : n], τ −max{W1, 0}), if Q1 = ∃

S(B[2 : n], τ −min{W1, 0}), if Q1 = ∀

p1 × S(B[2 : n], τ −W1)+

(1− p1)× S(B[2 : n], τ), if Q1 = Rp1

(6.1)

Observe that when B is empty, S is computed as 1 if τ ≤ 0, and S = 0
otherwise. For existential and universal quantifiers, we compute S based on the
weight. Specifically, if Q1 = ∃, we decrement the threshold τ by the maximum
between W1 and 0. For example, if W1 > 0, B1 is assigned 1, and assigned 0
otherwise. Therefore, by solving for an existential variable, we maximize S. In
contrast, when if Q1 = ∀, we fix an assignment of B1 that minimizes S by choosing
between the minimum of W1 and 0. Finally, for random quantifiers, we decompose
the computation of S into two sub-problems: one sub-problem where B1 = 1 and
the updated threshold becomes τ −W1 and another sub-problem where B1 = 0 and
the updated threshold remains the same. Herein, we compute S as the expected
output of both sub-problems.

Remark. S(B, τ) does not depend on the order of B.

Computing Minimum and Maximum probability of positive prediction
of Linear Classifiers Using S3P. For computing maxa Pr[Ŷ = 1|A = a] of a
linear classifier, we set existential quantifiers ∃ to sensitive features Aj, randomized
quantifiers Rto non-sensitive features Xi and construct a set B = A ∪X. The
coefficients WAj

and WXi
of the classifier become weights of B. Also, we get

n = m1 +m2. For non-sensitive variables Xi, which are chance variables, we derive
their marginal probability pi = Pr[Xi = 1] from the distribution D. According
to semantic of S3P, setting ∃ quantifiers on A computes the maximum value
of S(B, τ) that equalizes the maximum probability of positive prediction of the
classifier. In this case, the inferred assignment of A implies the most favored
group amax = arg maxa Pr[Ŷ = 1|A = a]. In contrast, to compute the minimum
probability of positive prediction, we instead assign each variable Aj a universal

101

quantifier while keeping random quantifiers over Xi, and infer the least favored
group amin = arg mina Pr[Ŷ = 1|A = a].

6.1.2 A Dynamic Programming Solution

We discuss a dynamic programming approach [142, 189] to solve S3P as the
problem has overlapping sub-problem properties. For example, S(B, τ) can be
solved by solving S(B[2 : n], τ ′), where the updated threshold τ ′, called the residual
threshold, depends on the original threshold τ and the assignment of B1 as shown in
Eq. (6.1). Building on this observation, we discuss the recursion and terminating
condition leading to our dynamic programming algorithm.

Recursion. We consider a function dp(i, τ) that solves the sub-problem S(B[i :
n], τ), for i ∈ {1, . . . , n}. The semantics of S(B, τ) in Eq. (6.1) induces the recursive
definition of dp(i, τ) as:

dp(i, τ) =

dp(i+ 1, τ −max{Wi, 0}), if Qi = ∃

dp(i+ 1, τ −min{Wi, 0}), if Qi = ∀

pi × dp(i+ 1, τ −Wi)+

(1− pi)× dp(i+ 1, τ), if Qi = Rpi

(6.2)

Eq. (6.2) shows that S(B, τ) can be solved by instantiating dp(1, τ), which
includes all the variables in B.

Terminating Condition. LetWneg,Wpos, andWall be the sum of negative, positive,
and all weights of B, respectively. We observe that Wneg ≤ Wall ≤ Wpos. Thus, for
any i, if the residual threshold τ ≤ Wneg, there is always a subset of B[i : n] with
sum of weights at least τ . Conversely, when τ > Wpos, there is no subset of B[i : n]
with sum of weights at least τ . We leverage this bound and tighten the terminating
conditions of dp(i, τ) in Eq. (6.3).

dp(i, τ) =

1 if τ ≤ Wneg

0 if τ > Wpos

1[τ ≤ 0] if i = n+ 1

(6.3)

102

Eq. (6.2) and (6.3) together define our dynamic programming algorithm. While
deploying the algorithm, we store dp(i, τ) in memory to avoid repetitive computations.
This allows us to achieve a pseudo-polynomial algorithm (Lemma 11) instead of a
naïve exponential algorithm enumerating all possible assignments. In particular, the
time complexity is pseudo-polynomial for chance (random) variables and linear for
choice (existential and universal) variables.

Lemma 11. Let n′ be the number of existential and universal variables in B. Let

W∃ =
∑

Bi∈B|Qi=∃
max{Wi, 0} and W∀ =

∑
Bi∈B|Qi=∀

min{Wi, 0}

be the considered sum of weights of existential and universal variables, respectively.
We can exactly solve S3P using dynamic programming with time complexity O((n−
n′)(τ + |Wneg| −W∃ −W∀) + n′). The space complexity is O((n− n′)(τ + |Wneg| −
W∃ −W∀)).

Proof. Case 1: All n variables in B have randomized quantifiers.
At step i of the dynamic programming (Eq. (6.2)), we modify the residual

threshold of that step, namely τi, either by subtracting Wi or by retaining it. Now,
we observe that the residual threshold τi for any i ∈ {1, . . . , n} will be in [0, τ+|Wneg|].
This holds because if τi crosses these bounds, the dynamic programming is terminated
as shown in Equation (6.3). Since all weights of {Wi}ni=1 are integers, the maximum
number of values that the residual threshold can take, is τ + |Wneg|. Thus, we
need to store at most n(τ + |Wneg|) values in the memory for performing dynamic
programming with n variables and (τ + |Wneg|) number of possible weights. Thus,
the space complexity is O(n(τ + |Wneg|)).

In order to construct the dynamic programming table, we have to call the dp
function O(n(τ + |Wneg|)) times, in the worst-case. Thus, the time complexity of
our method is O(n(τ + |Wneg|).

Case 2: n′ variables have existential and universal quantifiers and n−n′

variables have randomized quantifiers in B.
According to Eq. (6.2), W∃ and W∀ are the fixed weights of all existential and

universal variables, respectively. Therefore, we need to consider at most τ + |Wneg|−
W∃ −W∀ values of residual weights for random variables. By applying analysis in
Case 1, the space and time complexity is derived as O((n−n′)(τ+|Wneg|−W∃−W∀)).

103

We note that there is an additional time complexity of O(n′) for existential
and universal variables in Eq. (6.2). Thus the time complexity becomes O((n −
n′)(τ + |Wneg| −W∃ −W∀) + n′). We, however, do not require to store any entry
for existential and universal variables in dp function and thus, the space complexity
remains the same as O((n− n′)(τ + |Wneg| −W∃ −W∀)).

A Heuristic for Faster Computation. We discuss two improvements for a
faster computation of the dynamic programming solution. Firstly, we observe that
in Eq. (6.2), existential/universal variables are deterministically assigned based on
their weights. Hence, we reorder B such that existential/universal variables appear
earlier in B than random variables. This allows us to avoid unnecessary repeated
exploration of existential/universal variables in dp. Moreover, according to the
remark in Chapter 6.1.1, reordering B still produces the same exact solution of S3P.
Secondly, to reach the terminating condition of dp(i, τ) more frequently, we sort B
based on their weights—more specifically, within each cluster of random, existential,
and universal variables. In particular, if τ ≤ 0.5(Wpos −Wneg), τ is closer to Wpos

than Wneg. Hence, we sort each cluster in descending order of weights. Otherwise,
we sort in ascending order. We illustrate our dynamic programming approach in
Example 6.1.1.

Example 6.1.1. We consider a linear classifier P + Q + R − S ≥ 2. Herein, P
is a Boolean sensitive feature, and Q,R, S are Boolean non-sensitive features with
Pr[Q] = 0.4,Pr[R] = 0.5, and Pr[S] = 0.3. To compute the maximum probability of
positive prediction of the classifier, we impose an existential quantifier on P and
randomized quantifiers on others. This leads us to the observation that P = 1 is the
optimal assignment as WP = 1 > 0. We now require to compute Pr[Q+R− S ≥ 1],
which by dynamic programming, is computed as 0.55. The solution is visualized as a
search tree in Figure 6.1a, where we observe that storing the solution of sub-problems
in the memory avoids repetitive computation, such as exploring the node (4, 0).
Similarly, the minimum probability of positive prediction of the classifier is 0.14 (not
shown in Figure 6.1a) where we impose a universal quantifier on P to obtain P = 0
as the optimal assignment.

104

1, 2
0.55

2, 1
0.55

0.85 Pr[Q] + 0.35 Pr[¬Q]
= 0.55

3, 0
0.85

4,−1
1

4, 0
0.7

5, 1
0

5, 0
1

3, 1
0.35

4, 0
0.7

4, 1
0

5, 2
0

5, 1
0

P

Q

R ¬R

S ¬S

¬Q

R ¬R

S ¬S

(a) Known marginal probabilities.

1, 2
0.65

2, 1
0.65

0.85 Pr[Q|P]+
0.35 Pr[¬Q|P]
= 0.65

3, 0
0.85

4,−1
1

4, 0
0.7

5, 1
0

5, 0
1

3, 1
0.35

4, 0
0.7

4, 1
0

5, 2
0

5, 1
0

2, 2
0.11

3, 1
0.35

3, 2
0

4, 1
0

4, 2
0

5, 3
0

5, 2
0

P

Q

P

Q

R ¬R

S ¬S

¬Q

R ¬R

S ¬S

¬P

Q ¬Q

R ¬R

S ¬S

Bayesian
network

(b) Probabilities computed with a Bayesian network.

Figure 6.1: Search tree representation of S3P for computing the maximum probability
of positive prediction of the classifier on variables B = {P,Q,R, S} with weights
{1, 1, 1,−1} and threshold τ = 2 . Each node is labeled by (i, τ ′), where i is the
index of B and τ ′ is the residual threshold. The tree is explored using Depth-First
Search (DFS) starting with left child. Within a node, the value in the bottom
denotes dp(i, τ ′) that is solved recursively based on sub-problems dp(i + 1, ·) in
child nodes. Yellow nodes denote existential variables and all other nodes are
random variables. Additionally, a green node denotes a collision, in which case a
previously computed dp solution is returned. Leaf nodes (gray) are computed based
on terminating conditions in Eq. (6.3). In Figure 6.1b, nodes with double circles,
such as {(1, 2), (2, 1), (2, 2)}, are enumerated exponentially to compute conditional
probabilities from the Bayesian network.

105

6.1.3 Stochastic Subset Sum Problem with Correlated Vari-
ables

In S3P presented in Chapter 6.1.1, we consider all Boolean variables to be
probabilistically independent. This independence assumption often leads to an
inaccurate estimate of the probability of positive prediction of the classifier because
both sensitive and non-sensitive features can be correlated in practical fairness
problems. Therefore, we extend S3P to include correlations among variables.

We consider a Bayesian network BN = (G, θ) to represent correlated variables,
where G , (V,E), V ⊆ B, E ⊆ V×V, and θ is the parameter of the network. In
BN, we constrain that there is no conditional probability of choice (i.e., existential
and universal) variables as we optimize their assignment in S3P. Choice variables,
however, can impose conditions on chance (i.e., random) variables. In practice, we
achieve this by allowing no incoming edge on choice variables while learning BN (ref.
Chapter 6.2).

For a chance variable Bi ∈ V, let Pa(Bi) denote its parents. According to
Eq. (2.2), for an assignment u of Pa(Bi), BN ensures Bi to be independent of other
non-descendant variables in V. Hence, in the recursion of Eq. (6.2), we substitute pi
with Pr[Bi = 1|Pa(Bi) = u]. In order to explicate the dependence on u, we denote
the expected solution of S(B[i : n], τ) as dp(i, τ,u), which for Bi ∈ V is modified as
follows:

dp(i, τ,u) = Pr[Bi = 0|Pa(Bi) = u]dp(i+ 1, τ,u ∪ {0})

+ Pr[Bi = 1|Pa(Bi) = u]dp(i+ 1, τ −Wi,u ∪ {1}).

Since dp(i, τ,u) involves u, we initially perform a topological sort of V to enu-
merate the assignment of parents before computing dp on the child. Moreover, there
are 2|Pa(Bi)| assignments of Pa(Bi), and we compute dp(i, τ,u) for u ∈ {0, 1}|Pa(Bi)|

to incorporate all conditional probabilities into S3P. For this enumeration, we do
not store dp(i, τ,u) in memory. However, for Bi 6∈ V that does not appear in the
network, we instead compute dp(i, τ) and store it in memory as in Chapter 6.1.2,
because Bi is not correlated with other variables. Lemma 12 presents the complexity
of solving S3P with correlated variables, wherein unlike Lemma 11, the complexity
differentiates based on variables in V (exponential) and B \V (pseudo-polynomial).

106

Lemma 12. Let V ⊆ B be the set of vertices in the Bayesian network and n′′ be
the number of existential and universal variables in B \V. Let

w′∃ =
∑

Bi∈B\V|Qi=∃
max{Wi, 0} and w′∀ =

∑
Bi∈B\V|Qi=∀

min{Wi, 0}

be the sum of considered weights of existential and universal variables, respectively
that only appear in B \V. To exactly compute S3P with correlated variables in the
dynamic programming approach, time complexity is O(2|V| + (n − n′′ − |V|)(τ +
|Wneg|−w′∃−w′∀)+n′′) and space complexity is O((n−n′′−|V|)(τ+|Wneg|−w′∃−w′∀)).

Proof. We first separate analysis of space and time complexity for variables in V
and in B \ V. For each Boolean variable in V, we enumerate all assignments,
which has time complexity of 2|V| and there is no space complexity as discussed in
Chapter 6.1.3.

For variables in B \V, we apply analysis from Lemma 11, where we consider
(n − n′′ − |V|) random variables, n′′ existential/universal variables, and residual
weights can take at most (τ + |Wneg| − w′∃ − w′∀) values. Hence, time complexity
is O((n− n′′ − |V|)(τ + |Wneg| − w′∃ − w′∀) + n′′), and space complexity is O((n−
n′′ − |V|)(τ + |Wneg| − w′∃ − w′∀))

Combining two cases, overall time complexity isO(2|V|+(n−n′′−|V|)(τ+|Wneg|−
w′∃−w′∀) +n′′) and space complexity is O((n−n′′−|V|)(τ + |Wneg|−w′∃−w′∀)).

A Heuristic for Faster Computation. We observe that to encode conditional
probabilities, we enumerate all assignments of variables in V that are in the Bayesian
network. For computing the probability of positive prediction of a linear classifier
with correlated features, we consider a heuristic to sort variables in B = A∪X. Let
V ⊆ B be the set of vertices in the network and Vc = B \V. In this heuristic, we
sort sensitive variables A by positioning A∩V in the beginning followed by A∩Vc.
Then we order the variables B such that variables in X precedes those in X ∩V,
and the variables in X ∩Vc follows the ones in X ∩V. This sorting allows us to
avoid repetitive enumeration of variables in V ⊆ B as they are placed earlier in B.

Example 6.1.2. We extend Example 6.1.1 with a Bayesian Network (G, θ) with
V = {P,Q} and E = {(P,Q)}. Parameters θ imply conditional probabilities

107

Pr[Q|P] = 0.6 and Pr[Q|¬P] = 0.3. In Figure 6.1b, we enumerate all assignment
of P and Q to incorporate all conditional probabilities of Q given P . We, however,
observe that the dynamic programming solution in Chapter 6.1.2 still prunes search
space for variables that do not appear in V, such as {R, S}. Hence following the
calculation in Figure 6.1b, we obtain the maximum probability of positive prediction
of the classifier as 0.65 for P = 1. The minimum probability of positive prediction
(not shown) is similarly calculated as 0.11 for P = 0.

6.1.4 Fairness Verification using Probability of Positive Pre-
diction

Given a classifierM, a distribution D, and a fairness metric f , verifying whether
a classifier is ε-fair for ε ∈ [0, 1] is equivalent to computing 1[f(M|D) ≤ ε].
We now compute f(M|D) based on the maximum probability of positive pre-
diction maxa Pr[Ŷ = 1|A = a] and the minimum probability of positive prediction
mina Pr[Ŷ = 1|A = a] of a classifier.

For measuring fairness metric SP, we compute the difference maxa Pr[Ŷ = 1|A =
a]−mina Pr[Ŷ = 1|A = a]. We, however, deploy FVGM twice while measuring EO,
one for the distribution D conditioned on Y = 1 and another for Y = 0. In each
case, we compute maxa Pr[Ŷ = 1|A = a, Y = y]−mina Pr[Ŷ = 1|A = a, Y = y] for
y ∈ {0, 1} and take the maximum difference as the value of EO. For measuring causal
metric PCF, we compute maxa Pr[Ŷ = 1|A = a,Z] and mina Pr[Ŷ = 1,Z|A = a,Z]
conditioned on mediator features Z and take their difference. To measure disparate
impact DI, we compute the ratio maxa Pr[Ŷ = 1|A = a]/mina Pr[Ŷ = 1|A = a]. In
contrast to other fairness metrics, DI closer to 1 indicates higher fairness level. Thus,
we verify whether a classifier achieves (1− ε)-DI by checking 1[fDI(M|D) ≥ 1− ε].

6.1.5 Extension to Practical Settings

For verifying linear classifiers with real-valued features and coefficients, we
preprocess them so that FVGM can be invoked. Let X ∈ R be a continuous real-
valued feature with coefficient W ∈ R in the classifier. We discretize X to a set
B of k Boolean variables using binning-based discretization and assign a Boolean
variable to each bin. Hence, Bi ∈ B becomes 1, when X belongs to the ith bin. Let

108

0 20 40 60 80 100
Benchmarks solved

100

101

102

103

Ti
m

e
lim

it
(s

)

Logistic regression

FVGM
FairSquare
Justicia
VeriFair

0 20 40 60 80 100
Benchmarks solved

100

101

102

103

Ti
m

e
lim

it
(s

)

Support Vector Machine

FVGM
FairSquare
Justicia
VeriFair

Figure 6.2: A cactus plot to present the scalability of different fairness verifiers. The
number of solved benchmarks are on the X-axis and the required time is on the
Y -axis; a point (x, y) implies that a verifier takes less than or equal to y seconds
to compute fairness metrics of x many benchmarks. We consider 100 benchmarks
generated from 5 real-world datasets using 5-fold cross-validation. In each fold, we
consider {25, 50, 75, 100} percent of non-sensitive features.

µi denote the mean of feature-values within ith bin. We then set the coefficient of
Bi as µiW . By the law of large numbers, X ≈ ∑i µiBi for infinitely many bins [64].
Finally, we multiply the coefficients of discretized variables by l ∈ N \ {0} and round
to an integer. The accuracy of the preprocessing step relies on the number of bins k
and the multiplier l. Therefore, we empirically fine-tune both k and l by comparing
the processed classifier with the initial classifier on a validation dataset.

6.2 Empirical Performance Analysis
In this section, we empirically evaluate the performance of FVGM. We first

present the experimental setup followed by experimental results.

Experimental Setup. We implement a prototype of FVGM in Python (version
3.8). We deploy the Scikit-learn library for learning linear classifiers such as Logistic
Regression (LR) and Support Vector Machine (SVM) with linear kernels. We
perform five-fold cross-validation on a dataset. While the classifier is trained on
continuous features, we discretize them to Boolean features to be invoked by FVGM.
During discretization, we apply a gird-search to estimate the best bin-size within
a maximum bin of 10. To convert the coefficients of features into integers, we
employ another grid-search to choose the best multiplier within {1, 2, . . . , 100}. For
learning a Bayesian network on the converted Boolean data, we deploy the PGMPY

109

library [8]. For network learning, we apply a Hill-climbing search algorithm that
learns a DAG structure by optimizing K2 score [88]. For estimating parameters of
the network, we use Maximum Likelihood Estimation (MLE) algorithm.

We compare FVGM with three existing fairness verifiers: Justicia (Chapter 5),
FairSquare [4], and VeriFair [15]. In the following, we discuss a comparative analysis
among all verifiers based on scalability and accuracy, where FVGM yields superior
performance than others.

6.2.1 Scalability Analysis

Benchmarks. We perform the scalability analysis on five real-world datasets
studied in the literature of fairness in machine learning: UCI Adult, German-
credit [44], COMPAS [7], Ricci [121], and Titanic (https://www.kaggle.com/c/
titanic). We consider 100 benchmarks generated from 5 real-world datasets and
report the computation times for disparate impact and statistical parity metrics of
different verifiers.

Results. In Figure 6.2, we present the scalability results of different verifiers. First,
we observe that FairSquare often times out (= 900 seconds) and can solve ≤ 5
benchmarks. This indicates that SMT-based reduction for linear classifiers cannot
scale. Similarly, SSAT-based verifier Justicia that performs pseudo-Boolean to CNF
translation for linear classifiers, times out for around 20 out of 100 benchmarks.
Sampling-based framework, VeriFair, has comparatively better scalability than
SMT/SSAT-based frameworks and can solve more than 90 benchmarks. Finally,
FVGM achieves impressive scalability by solving all 100 benchmarks with 1 to 2
orders of magnitude runtime improvements than existing verifiers. Therefore, S3P-
based framework FVGM proves to be highly scalable in verifying fairness properties
of linear classifiers than the state-of-the-art.

6.2.2 Accuracy Analysis

Benchmark Generation. To perform accuracy analysis, we require the ground
truth, which is not available for real-world instances. Therefore, we focus on

110

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic

2 3 4 5
Features

0.0

0.1

0.2

0.3

0.4

Di
sp

ar
at

e
im

pa
ct

Logistic regression
Exact
FVGM

Justicia
FairSquare

VeriFair

2 3 4 5
Features

0.0

0.1

0.2

0.3

0.4

0.5

Di
sp

ar
at

e
im

pa
ct

Support Vector Machine
Exact
FVGM

Justicia
FairSquare

VeriFair

Figure 6.3: Comparing the average accuracy of different verifiers over 100 synthetic
benchmarks while varying the number of features. FVGM yields the closest estimation
of the analytically calculated Exact values of disparate impact for LR and SVM
classifiers.

generating synthetic benchmarks for analytically computing the ground truth of
different fairness metrics, such as disparate impact, from the known distribution
of features. In each benchmark, we consider n ∈ {2, 3, 4, 5} features including one
Boolean sensitive feature, say A, generated from a Bernoulli distribution with mean
0.5. We generate non-sensitive features Xi from Gaussian distributions such that
Pr[Xi|A = 1] ∼ N (µi, σ2) and Pr[Xi|A = 0] ∼ N (µ′i, σ2), where µi, µ′i ∈ [0, 1],
σ = 0.1, and µi, µ′i are chosen from a uniform distribution in [0, 1]. Finally, we create
label Y = 1[∑n−1

i=1 Xi ≥ 0.5∑n−1
i=1 (µi + µ′i)] such that Y does not directly depend on

the sensitive feature. For each n, we generate 100 random benchmarks, learn LR
and SVM classifiers on them, and compute disparate impact using different verifiers.

Analytic Computation of Disparate Impact. Let the coefficients of the
classifier be wi for Xi and wA for A, and bias be τ . Since all non-sensitive features
are from Gaussian distributions, we compute the probability of the predicted class
Pr[Ŷ |A = 1] ∼ N (∑n−1

i=1 wiµi, σ
2
Ŷ

) and Pr[Ŷ |A = 0] ∼ N (∑n−1
i=1 wiµ

′
i, σ

2
Ŷ

) with
σ2
Ŷ

= (∑n−1
i=1 w

2
i)σ2. Hence, the probability of positive prediction of the classifier is

1− CDF
Ŷ |A=1(τ − wA) for A = 1 and 1− CDF

Ŷ |A=0(τ) for A = 0, where CDF is the
cumulative distribution function. Finally, we compute disparate impact by taking
the ratio of the minimum and the maximum of the probability of positive prediction
of the classifier for A = 1 and A = 0.

111

Results. We assess the accuracy of the competing verifiers in estimating fairness
metrics, specifically disparate impact with LR and SVM classifiers. In Figure 6.3,
FVGM computes disparate impact closest to the Exact value for different number of
features and both type of classifiers. In contrast, Justicia, FairSquare, and VeriFair
measure disparate impact far from the Exact because of ignoring correlations among
the features. For example, for SVM classifier with n = 5 (right plot in Figure 6.3),
Exact disparate impact is 0.089 (average over 100 random benchmarks). Here, FVGM
computes disparate impact as 0.094, while all other verifiers compute disparate
impact as at least 0.233. Therefore, FVGM is more accurate than existing verifiers
as it explicitly considers correlations among features.

6.3 Chapter Summary
We discuss FVGM, an efficient fairness verification framework for linear classifiers

based on a novel stochastic subset-sum problem. FVGM encodes a graphical model
of feature-correlations, represented as a Bayesian Network, and computes multiple
group and causal fairness metrics accurately. We experimentally demonstrate that
FVGM is more accurate and scalable than the existing verifiers.

112

Part IV

Epilogue

113

In Chapter 7, we envision towards combining two research themes in the thesis:
interpretability and fairness, and discuss an algorithmic framework to interpret
fairness in machine learning. In Chapter 8, we conclude the thesis and discuss future
work.

114

Chapter 7

Interpreting Fairness: Identifying
Sources of Bias

As demonstrated in Chapter 5 and 6, fairness metrics measure global bias, but do
not detect or interpret its sources [16, 110, 133]. In order to diagnose the emergence
of bias in the predictions of classifier, it is important to compute explanations, such as
how different features attribute to the global bias. Motivated by the GDPR’s “right
to explanation”, research on interpreting model predictions [151, 112, 111] has surged,
but interpreting prediction bias has received less attention [16, 110]. In order to
identify and interpret the sources of bias and also the impact of affirmative/punitive
actions to alleviate/deteriorate bias, it is important to understand which features
contribute how much to the bias of a classifier applied on a dataset. To this end,
we follow a global feature-attribution approach to interpret the sources of bias,
where we relate the influences of input features towards the resulting bias of the
classifier. In this context, existing bias attributing methods [16, 110] are variants
of local function approximation [171], whereas bias is a global statistical property
of a classifier. Thus, we aim to design a bias attribution method that is global by
construction. In addition, existing methods only attribute the individual influence of
features on bias while neglecting the intersectionality among features. Quantifying
intersectionality allows us to interpret bias induced by the higher-order interactions
among features; hence accounting for intersectionality is important to understand
bias as suggested by recent literature [27, 185]. In this chapter, we aim to design a
global bias attribution framework and a corresponding algorithm that can quantify
both the individual and intersectional influences of features leading to granular and
functional explanation of the sources of bias.

115

Contributions. Our contributions are three-fold.

1. Formalism: We discuss how to measure the contribution of individual and
intersectional features towards the bias of a classifier operating on a dataset
by estimating their Fairness Influence Functions (FIFs) (Chapter 7.2). Our
method is based on transforming existing fairness metrics into the difference of
scaled conditional variances of classifier’s prediction, which we then decompose
using Global Sensitivity Analysis (GSA)—a standard technique recommended
by regulators to assess numerical models[52, 132]. FIFs have several desirable
properties (Theorem 14), including the decomposability property [16, 110].
This property states that the sum of FIFs of all individual and intersectional
features equals the bias of the classifier. With this formulation of FIFs, we
can identify which features have the greatest influence on bias by looking at
the disparity in their scaled decomposed variance between sensitive groups.

2. Algorithmic: We discuss a new algorithm, called FairXplainer, to estimate
individual and intersectional FIFs of features given a dataset, a classifier, and
a fairness metric. The algorithm is capable of working with any linear group
fairness metric, including statistical parity, equalized odds, or predictive parity
(Chapter 7.3). Building on GSA[161] techniques, FairXplainer solves a local
regression problem [108] based on cubic splines [102] to decompose the variance
of the classifier’s prediction among all the subsets of features.

3. Experimental: We evaluate FairXplainer on a variety of real-world datasets
and machine learning classifiers to demonstrate its efficiency in estimating
the individual and intersectional FIFs of features. Our results show that
FairXplainer has a higher accuracy in approximating bias using estimated FIFs
compared to existing methods (Chapter 7.4). Our estimation of FIFs also shows
a strong correlation with fairness interventions. Furthermore, FairXplainer
yields more granular explanation of the sources of bias by combining both
individual and intersectional FIFs, and also detects patterns that existing
fairness explainers cannot. Finally, FairXplainer enables us to observe changes
in FIFs as a result of different fairness enhancing algorithms [28, 69, 86, 196,

116

Data:

age

fitness income

Ŷ

(a) Dependency among fea-
tures and prediction

0.0 0.5 1.0
fitness

0.0 0.5 1.0
income

age = young age = elderly

(b) Age-dependent distributions of non-sensitive
features

Classifier:

fitness
≥

0.61

income
≥

0.29

income
≥

0.69

Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0

Y N

Y N Y N

(c) Decision tree (DT1)

fitness
≥

0.61

income
≥

0.29

income
≥

0.55

Ŷ = 1 Ŷ = 0 Ŷ = 1 Ŷ = 0

Y N

Y N Y N

(d) Decision tree with an affirmative ac-
tion (DT2)

FIF:
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Influence on Statistical Parity

fitness

income

income & fitness

0.355

0.098

0.055

0.507

(e) Fairness influence functions (FIF) for
DT1

−0.4 −0.3 −0.2 −0.1 0.0 0.1
Influence on Statistical Parity

income

fitness

income & fitness

-0.388

0.322

0.07

0.004

(f) Modified FIFs for DT2

Figure 7.1: FIFs of input features to investigate the bias (statistical parity) of a
decision tree predicting the eligibility for health insurance using age-dependent
features ‘fitness’ and ‘income’. An affirmative action reduces bias as corresponding
FIFs reflect it.

197, 198, 199] and fairness reducing attacks [72, 122, 174]. This creates
opportunities to further examine the impact of these algorithms.

We illustrate the usefulness of our contributions via an example scenario presented
in Example 5.0.1.

Example 7.0.1. We consider a classifier that decides an individual’s eligibility for
health insurance based on non-sensitive features: fitness and income. Fitness and
income depend on a sensitive feature age ∈ {young, elderly} leading to two sensitive
groups, as highlighted in (Figure 7.1a–7.1b).

Case study 1: For each sensitive group, we generate 1000 samples of (income,
fitness) and train a decision tree (DT1), which predicts without explicitly using the

117

sensitive feature (Figure 7.1c). Using the 1000 samples and corresponding predictions,
we estimate the statistical parity of DT1 as Pr[Ŷ = 1 | age = young]− Pr[Ŷ = 1 |
age = elderly] = 0.695− 0.165 = 0.53. Therefore, DT1 is unfair towards the elderly
group.

Using the methods described in this chapter, we examine the sources of unfairness
in DT1 by calculating the FIFs of each feature subset. Positive values represent
a reduction in fairness due to increased statistical parity, while negative values
indicate an improvement in fairness. The results, shown in the waterfall diagram
in Figure 7.1e, indicate that fitness (FIF = 0.355), income (FIF = 0.098), and the
combination of income and fitness (FIF = 0.055) contribute to higher statistical
parity and bias. Fitness, being the root of DT1, has a greater impact on statistical
parity than income, which is at the second level of DT1. Our method also reveals the
joint effect of income and fitness on statistical parity, which prior methods do not
account for (Chapter 7.1). The total of the FIFs of all features, 0.355+0.098+0.055 =
0.507 ≈ 0.53, approximately matches the statistical parity of the classifier, providing
a way to break down the bias among all feature subsets. Note that we discuss the
estimation error of FIFs in Chapter 7.3.

Case study 2: To address the unfairness of DT1 towards the elderly, we
introduce DT2 which applies an affirmative action. Specifically, for lower fitness,
which is typical for the elderly group (Figure 7.1b), we decrease the threshold on
income from 0.69 to 0.55 (green node in Figure 7.1d). This allows more elderly
individuals to receive insurance as they tend to have higher income, and the lower
threshold accommodates their eligibility. The statistical parity of DT2 is calculated
to be Pr[Ŷ = 1 | age = young]− Pr[Ŷ = 1 | age = elderly] = 0.707− 0.706 = 0.001,
which is negligible compared to the earlier statistical parity of 0.53 in DT1. We
estimate the FIFs of features, with −0.388 for income, 0.322 for fitness, and 0.07
for both features combined. Hence, the negative influence of income confirms the
affirmative action, and nullifies the disparity induced by fitness. Additionally, the
sum of FIFs −0.388 + 0.322 + 0.07 = 0.004 coincides with the statistical parity of
DT2.

118

7.1 Related Work
Recently, local explanation methods have been applied to black-box classifiers

to explain sources of bias through feature-attribution[16, 110] and causal path
decomposition[133]. Our work uses the feature-attribution approach and highlights
three limitations of existing methods: (i) a failure to estimate intersectional FIFs,
(ii) inaccuracies in approximating bias based on FIFs, and (ii) less correlation of
FIFs to fairness intervention. Elaborately, to interpret group fairness—a global
property of a classifier—existing local explanation approaches such as [16, 110]
estimate FIFs based on a local black-box explainer SHAP [112]. They apply a
global aggregation (i.e. expectation) of all local explanations corresponding to all
data points in a dataset. Such a global aggregation of local explanations is often
empirically justified and does not approximate bias accurately (Chapter 7.4). In
addition, existing methods ignore the joint contribution of correlated features on bias.
To address these limitations, we develop a formal framework to interpret sources of
group unfairness in a classifier and also a novel methodology to estimate FIFs. To
the best of our knowledge, this is the first work to do both.

Among other related works, [18] links GSA measures such as Sobol and Cramér-
von-Mises indices to different fairness metrics. While their approach relates the
GSA of sensitive features on bias, we focus on applying GSA to all features to
estimate FIFs. Their approach detects the presence or absence of bias, while we
focus on decomposing bias as the sum of FIFs of all feature subsets. In another line
of work, [42] estimate feature-influence as the shifting of bias from its original value
by randomly intervening features. Their work is different from the decomposability
property of FIFs, where the sum of FIFs is equal to the bias. A separate line of
work estimates the fairness influence of data points in a dataset [104, 187], while
our focus is on quantifying influences of input features.

7.2 Fairness Influence Functions: Formulation
and Properties

We formalize Fairness Influence Functions (FIF) as a quantifier of the contribution
of a subset of features to the resultant bias of a classifier applied on a dataset. In

119

GSA, we observe that the variance of the output of a function can be attributed to the
corresponding subset of input variables through variance decomposition (Eq. (2.5)).
To leverage the power of GSA in fairness in machine learning, we first express
the existing fairness metrics in terms of the variance of classifier’s prediction in
Chapter 7.2.1. This allows us to formulate FIF by leveraging variance decomposition
(Chapter 7.2.2).

7.2.1 Fairness Metrics as the Variance of Prediction

First we recall the definition of statistical parity in Chapter 2.3.2.

fSP(M,D) , max
a

Pr[Ŷ = 1|A = a]−min
a

Pr[Ŷ = 1|A = a]

Therefore, the random variable central to computing statistical parity is 1[Ŷ =
1 | A = a]. We refer to this indicator function as Conditional Positive Prediction
(CPP) of a classifier. Now, we express statistical parity as a functional of the
probability of CPPs for different sensitive groups [18]. For brevity, we defer similar
formulations for the other fairness metrics, i.e. equalized odds and predictive parity,
to Appendix D.3.

Our key idea for computing FIFs of features is to represent fairness metrics using
the variance of CPPs. Formally, we express statistical parity using the variance of
CPPs in Lemma 13.

Lemma 13 (Statistical Parity as Difference of Variances of CPPs). Let amax =
arg maxa Pr[Ŷ = 1 | A = a] and amin = arg mina Pr[Ŷ = 1 | A = a] be the
most and the least favored sensitive groups, respectively. The statistical parity of
a binary1 classifier is the difference in the scaled variance of CPPs. Formally, if
Pr[Ŷ = 0 | A = amax] 6= 0 and Pr[Ŷ = 0 | A = amin] 6= 0,

fSP(M,D) = Var[Ŷ = 1 | A = amax]
Pr[Ŷ = 0 | A = amax]

− Var[Ŷ = 1 | A = amin]
Pr[Ŷ = 0 | A = amin]

.

Proof. For a sensitive group a, CPP is a Bernoulli random variable, where probabil-
ity2 pa = Pr[Ŷ = 1 | A = a] and variance Va = Var[Ŷ = 1 | A = a] = pa(1 − pa).

1For a multi-class classifier, statistical parity of the target class y ∈ N is Var[Ŷ =y|A=amax]
1−Pr[Ŷ =y|A=amax]

−
Var[Ŷ =y|A=amin]

1−Pr[Ŷ =y|A=amin]
.

2For any binary event E, expectation and probability are identical, E[1(E)] = Pr[E = 1].

120

Thus, for sensitive groups amax and amin, the statistical parity of the classifier is
pamax − pamin = Vamax

1−pamax
− Vamin

1−pamin
. Replacing 1− pa = Pr[Ŷ = 0 | A = a] proves the

lemma.

Example 7.0.1 (Revisited). From Figure 7.1c, the probability of CPPs of the
decision tree for the most and least favored groups are Pr[Ŷ = 1 | age = young] =
0.695 and Pr[Ŷ = 1 | age = elderly] = 0.165, respectively. Thus, the statistical
parity is 0.695 − 0.165 = 0.53. Next, we compute variance of CPPs as Var[Ŷ =
1 | age = young] = 0.212 and Var[Ŷ = 1 | age = elderly] = 0.138. Thus, following
Lemma 13, we compute the difference in the scaled variance of CPPs as 0.212

1−0.695 −
0.138

1−0.165 = 0.529 ≈ 0.53, which coincides with the statistical parity reported earlier.

7.2.2 Formulation of FIF

We are given a binary classifierM, a dataset D, and a fairness metric f(M,D) ∈
R≥0. Our objective is to compute the influences of features on f . Particularly, we
compute the influence of each subset of features ZS, where S = {Si | 1 ≤ |Si| ≤
m} ⊆ [m] is a non-empty subset of indices of Z.

Definition 1. Fairness Influence Function (FIF)3, denoted by wS : (M,ZS)→
R, measures the quantitative contribution of features ZS ⊆ Z on the incurred bias
f(M,D). Leveraging the variance-difference representation of f(M,D) (Lemma 13)
and variance decomposition (Eq. (2.5)), we particularly define wS as

wS ,
Vamax,S

Pr[Ŷ = 0 | A = amax]
− Vamin,S

Pr[Ŷ = 0 | A = amin]
. (7.1)

Here, given a sensitive group a, Va,S , VarZS [EZ\ZS [Ŷ = 1 | A = a,ZS]]−∑S′⊂S Va,S′

is the contribution (decomposed variance) of features ZS in Var[Ŷ = 1 | A = a].

Informally, the FIF wS of ZS is the difference in the scaled decomposed variance
of CPPs between sensitive groups amax and amin as induced by ZS. Thus, FIF of
features is non-zero when the scaled decomposed variance-difference of CPPs is
non-zero for those features, and vice versa. We refer to wS as an individual influence

3For equalized odds, a precise definition of FIF is wS : (M, Y,ZS)→ R taking the ground class
Y as an additional input. For predictive parity, FIF is defined as wS : (M, Ŷ ,ZS)→ R taking the
predicted class Ŷ as an additional input.

121

when |S| = 1, and as an intersectional influence when |S| > 1. Being able to
naturally quantify the higher-order influences allow FIFs to interpret the sources of
bias in a more fine-grained manner. We experimentally validate this in Chapter 7.4.

Properties of FIF FIF as defined in Eq. (7.1) yields interesting properties, such
as decomposability4, symmetry, and null properties, which we formally state in
Theorem 14.

Theorem 14 (Properties of FIF). Let f(M,D) be the bias/unfairness of the
classifierM on dataset D according to linear group fairness metrics such as statistical
parity. Let wS be the FIF of a subset of features ZS as defined in Eq. (7.1).

(a) The decomposability property of FIF states that the sum of FIFs of all subset
of features is equal to the bias of the classifier.

∑
S⊆[m]

wS = f(M,D) (7.2)

(b) The symmetry property states that two features Zi and Zj are equivalent based
on FIF if the sum of corresponding individual influences and the intersectional
influences with all other features are the same. Mathematically,

∑
S′′⊆[m]\{i,j}

wS′′∪{i} =
∑

S′′⊆[m]\{i,j}
wS′′∪{j} (7.3)

if∑S′⊆S∪{i}wS′ = ∑
S′⊆S∪{j}wS′ for every non-empty subset S of [m] containing

neither i nor j.

(c) The null property of FIF states that feature Xi s a dummy or neutral feature if
sum of its individual influence and the intersectional influences with all other
features is zero. Mathematically,

∑
S′′⊆[m]\{i}

wS′′∪{i} = 0 (7.4)

if ∑S′⊆S∪{i}wS′ = ∑
S′⊆S wS′ for every non-empty subset S of [m] that does

not contain i.
4Decomposability property is also known as the efficiency property in the context of Shapley

values [155].

122

We emphasize that the decomposability property discussed here is global, i.e. it
holds for a whole dataset, but the one used for Shapley-value based explanations (ref.
Def. 1, [112]), or any local explanation method [68], is specific to a given data
point [171]. Thus, they are fundamentally different.

The symmetry and null properties of FIFs also distinguish the FIF quantification
discussed in Eq. (7.1) from the attribution methods considering only individual
features, like SHAP. For example, a feature i has zero impact on bias if not only
its individual influence but the sum of influences of all the subsets of features that
includes i is zero. Thus, the symmetry and null properties stated here are by default
global and intersectional, and these two aspects are absent in the existing bias
explainers.

Bias Amplifying and Eliminating Features. The sign of wS indicates whether
features ZS amplify the bias of the classifier or eliminate it. When the scaled
decomposed variance of CPPs w.r.t. features ZS for the sensitive group amax is
higher than the group amin, wS > 0. As such, ZS increase bias. Conversely, when
wS < 0, ZS eliminates bias, and improves fairness. Finally, features ZS are neutral
in bias when wS = 0.

Now, we present the following two propositions that relate the sign of wS with
the decomposed variance of CPPs.

Proposition 15. When wS < 0, i.e. features ZS decrease bias, the decomposed
variance of CPPs w.r.t. ZS follows Vamax,S < Vamin,S.

Proposition 15 implies that if a subset of features ZS is bias-eliminating, the
conditional variance in positive outcomes induced by ZS is smaller for the most
favoured group than that of the least favoured group.

Proposition 16. If the decomposed variance of CPPs w.r.t. ZS satisfies Vamax,S >

Vamin,S, the corresponding FIF wS > 0, i.e. features ZS increase bias.

Proposition 16 implies that if the conditional variance in positive outcomes
induced by ZS is larger for the most favoured group than that of the least favoured
group, then this subset of features ZS is bias-inducing.

123

Special Cases. Since our FIF formulation is based on the variance of prediction,
for (degenerate) cases when the conditional prediction of the classifier is always
positive or always negative for any sensitive group, the variance of prediction becomes
zero. This observation results in following two propositions.

Proposition 17 (Perfectly Unbiased Classifiers). When Pr[Ŷ = 1 | A = amax] =
Pr[Ŷ = 1 | A = amin] and both conditional probabilities are either 0 or 1, the FIF
wS = 0 for all subsets of features ZS.

When Pr[Ŷ = 1 | A = amax] = Pr[Ŷ = 1 | A = amin] for a classifier, it means
that the classifier equally yields positive predictions for each of the sensitive groups.
Thus, there is no bias (in terms of statistical parity) in the classifier outcome. In
that case, our formulation of FIF yields wS = 0 for all the subsets of features, and
leads to a degenerate conclusion that all subsets of features are neutral or zero-bias
inducing.

Proposition 18 (Perfectly Biased Classifier). When statistical parity is 1, i.e.
Pr[Ŷ = 1 | A = amax] = 1 and Pr[Ŷ = 1 | A = amin] = 0, the sensitive features A
are solely responsible for bias. In this case, the FIF wS = 0 for all features.

When a classifier always yields positive predictions for the most favoured group
and only negative predictions for the least favoured group, we obtain Pr[Ŷ = 1 |
A = amax] = 1 and Pr[Ŷ = 1 | A = amin] = 0. This is a perfectly biased classifier,
which can be expressed by the binary rule Ŷ = 1 if A = amax and 0 otherwise. As
the discrimination is only due to the sensitive features, our FIF formulation cannot
attribute any bias to the any other subset of features, which leads to wS = 0 for all
S.

Remark. For detecting degenerate cases, we require to compute Pr[Ŷ = 1 | A =
amax] and Pr[Ŷ = 1 | A = amin] on the dataset D. Hence, the detection can be
performed in a straightforward manner.

Expressing FIF in terms of the variance decomposition over a subset of features
allows us to import and extend well-studied techniques of GSA to perform FIF
estimation, which we elaborate on Chapter 7.3.

124

7.3 An Algorithm to Estimate Fairness Influence
Functions

We discuss an algorithm, FairXplainer, that leverages the variance decomposition
of CPPs to estimate the FIFs of all subsets of features. FairXplainer has two
algorithmic blocks: (i) local regression to decompose the classifier into component
functions taking distinct subsets of features as input and (ii) computing the variance
(or covariance) of each component function. We describe the schematic of FairXplainer
in Algorithm 6.

A Set-additive Representation of the Classifier. To apply variance decompo-
sition (Eq. (2.5)), we learn a set-additive representation of the classifier (Eq. (2.4))
with input Z ≡ (X,A). Let us denote the classifierM conditioned on a sensitive
group a as ga(Z) ,M(X,A = a). We express ga as a set-additive model:

ga(Z) = ga,0 +
∑

S⊆[m],|S|≤λ
ga,S(ZS) + δ (7.5)

Here, ga,0 is a constant, ga,S is a component function of ga taking a non-empty
subset of features ZS as input, and δ is the approximation error. For computa-
tional tractability, we consider only components of maximum order λ, denoting the
maximum order of intersectionality. FairXplainer deploys backfitting algorithm for
learning component functions in Eq. (7.5), as discussed in the following.

Local Regression with Backfitting. We perform local regression with backfit-
ting algorithm to learn the component functions up to a given order λ (Line 6–13).
Backfitting algorithm is an iterative algorithm, where in each iteration one com-
ponent function, say ga,S, is learned while keeping other component functions
fixed. Specifically, ga,S is learned as a smoothed function of g and rest of the
components ga,S′ , where S′ 6= S is a non-empty subset of [m]. To keep every com-
ponent function mean centered, backfitting requires to impose two constraints: (i)
ga,0 = Mean

(
{g(z(i))}n

i=1,a(i)=a

)
(Line 7), which is the mean of ga evaluated on data

points belonging to the sensitive group a; and (ii) ∑n
i=1,a(i)=a ga,S(z(i)

S) = 0 (Line 11),
where z(i)

S is the subset of feature values associated with feature indices S for the
i-th data point z(i). These constraints assign the expectation of ga on the constant
term ga,0 and the variance of ga to the component functions.

125

Algorithm 6 FairXplainer: An algorithm for estimating FIFs

Input: ClassifierM : (X,A)→ Ŷ , dataset D = {(z(i), y(i))}ni=1, fairness metric
f(M,D) ∈ R≥0, and maximum order of intersectional influence λ

Output: FIF wS for the subsets of features {ZS}

1: amax = arg maxa Pr[Ŷ = 1|A = a],amin = arg mina Pr[Ŷ = 1|A = a],m ← |Z|,Z ≡
(X,A)

2: for a ∈ {amax,amin} do . Enumerate for specific sensitive groups
3: ga,S, ga,0 ← LocalRegression(M(X,A = a), {z(i)}ni=1, λ,m)
4: Va,S ← Covariance(ga, {z(i)}ni=1, ga,S, ga,0)
5: Compute wS using Vamax,S and Vamin,S as in Equation (7.1)

6: function LocalRegression(ga, {z(i)}ni=1, λ,m)
7: Initialize: ga,0 ←Mean({g(z(i))}n

i=1,a(i)=a), ĝa,S ← 0, ∀S ∈ [m],S 6= ∅, |S| ≤ λ
8: while each ĝa,S does not converge do
9: for each S do

10: ĝa,S ← Smooth
(
{ga(z(i))− ga,0 −

∑
S6=S′ ĝa,S′(z(i)

S)}n
i=1,a(i)=a

)
11: ĝa,S ← ĝa,S −Mean

(
{ĝa,S(z(i)

S)}n
i=1,a(i)=a

)
. Mean centering

12:
13: return ga,S, ga,0

14: function Covariance(ga, {z(i)}ni=1, ga,S, ga,0)
15:
16: return

∑n
i=1,a(i)=a ga,S(z(i)

S)(ga(z(i))− ga,0)

While performing local regression, backfitting uses a smoothing operator [107]
over the set of data points (Line 10). A smoothing operator, referred as Smooth,
allows us to learn a global representation of a component function by smoothly
interpolating τ + 2 local points obtained by local regression [107]. In this chapter, we
apply cubic spline smoothing [102] to learn each component function. Cubic spline
is a piecewise polynomial of degree 3 with C2 continuity interpolating local points in
τ intervals. Hence, the first and second derivatives of each piecewise term are zero at
the endpoints of intervals. We refer to Appendix D.2 for details of implementation.
An ablation study demonstrating the impacts of the hyperparameters τ and λ on
the performance of FairXplainer is in Appendix D.4.

Variance and Covariance Computation. Once each component function ga,S

is learned with LocalRegression (Line 6–13), we compute variances of the
component functions and their covariances using ga(·). Since each component

126

function is mean centered (Line 11), we compute the variance of ga,S for the dataset
D as Var[ga,S] = ∑n

i=1,a(i)=a(ga,S(z(i)
S))2. Hence, variance captures the independent

effect of ga,S. Covariance is computed to account for the correlation among features
Z. We compute the covariance of ga,S with ga on the dataset as

Cov[ga,S, ga] =
n∑

i=1,a(i)=a
ga,S(z(i)

S)(ga(z(i))− ga,0).

Here, ga(·) − ga,0 is the mean centered form of ga. Covariance of ga,S can be
both positive and negative depending on whether the features ZS are positively or
negatively correlated with ga. Specifically, under the set additive model, we obtain
Cov[ga,S, ga] = Var[ga,S] + Cov[ga,S,

∑
S6=S′ ga,S′]. Now, we use Va,S = Cov[ga,S, ga] as

the effective variance of ZS for a given sensitive group a (Line 14–16). In Line 1–5, we
compute Va,S for the most and the least favored groups, and plug them in Eq. (7.1)
to yield an estimate of FIF of ZS.

Proposition 19 (Time Complexity of FairXplainer). Let t be the number of iterations
of the backfitting algorithm, m be the number of features, λ be the maximum order
of intersectional features, and s be the runtime complexity of the smoothing oracle5.
Then, the runtime complexity of Algorithm 6 is O

(
ts
∑λ
i=1

(
m
i

))
. For example, if

we are interested in up to first and second order intersectional features, the runtime
complexities are O(tsm) and O(tsm2), respectively.

7.4 Empirical Performance Analysis
In this section, we perform an empirical evaluation of FairXplainer. Particularly,

we discuss the experimental setup, the objectives of experiments, and experimental
results.

Experimental Setup. We implement a prototype of FairXplainer in Python (ver-
sion 3.7.6). To estimate FIFs, we leverage and modify the ‘HDMR’ module in
SALib library [70] based on global sensitivity analysis. In experiments, we consider
four widely studied datasets from fairness literature, namely German-credit [46], Ti-
tanic (https://www.kaggle.com/c/titanic), COMPAS [7], and Adult dataset [46].

5Typically, the runtime complexity of smoothing oracles, particularly of cubic splines, is linear
with respect to n, i.e. the number of samples [179].

127

https://www.kaggle.com/c/titanic

We deploy Scikit-learn [138] to learn different classifiers: logistic regression classi-
fier, support vector machine (SVM), neural network, and decision tree with 5-fold
cross-validation. In experiments, we specify FairXplainer to compute intersectional
influences up to the second order (λ = 2). While applying cubic-spline based local
regression in FairXplainer, we set τ , the number of spline intervals to 6. We compare
FairXplainer with the existing Shapley-valued based FIF computational framework
(https://shorturl.at/iqtuX), referred as SHAP [110]. For both FairXplainer and
SHAP, we set a timeout of 300 seconds for estimating FIFs. In addition, we deploy
FairXplainer along with a fairness-enhancing algorithm [85] and a fairness attack [174]
algorithm, and analyze the effect of these algorithms on the FIFs and the resultant
fairness metric. In the following, we discuss the objectives of our empirical study.

1. Performance: How accurate and computationally efficient FairXplainer
and SHAP are in approximating the bias of a classifier based on estimated
FIFs?

2. Functionality: How do FIFs estimated by FairXplainer and SHAP correlate
with the impact a fairness intervention strategy on features?

3. Granularity of explanation: How effective are the intersectional FIFs in
comparison with the individual FIFs while tracing the sources of bias?

4. Application: How do FIFs quantify the impact of applying different fairness
enhancing algorithms, i.e. affirmative actions, and fairness attacks, i.e.
punitive actions?

In summary, (1) we observe that FairXplainer yields less estimation error than
SHAP while approximating statistical parity using FIFs. FairXplainer incurs lower
execution time, i.e. better efficiency in computing individual FIFs than SHAP while
also enabling computation of intersectional FIFs for real-world datasets and classifiers.
(2) While considering a fairness intervention, i.e. change in bias due to omission of a
feature, FIFs estimated by FairXplainer have higher correlation with increase/decrease
in bias due to the intervention than SHAP. Thus, FairXplainer demonstrates to be a
better choice for identifying the features influencing the group fairness metrics than
SHAP. (3) By quantifying both the individual and intersectional influences of features,

128

https://shorturl.at/iqtuX

Table 7.1: Median error (over 5-fold cross validation and all combinations of sensitive
features) of estimating statistical parity, |SP− ŜP|, using FIFs computed by different
methods (columns 5 to 7). Best results (lowest error) are in bold color. ‘—’ denotes
timeout.

Dataset Dimension
(n,m) Max |A| Classifier SHAP FairXplainer

λ = 1 λ = 2

Titanic (834, 11) 3

Logistic Regression 2.018 0.218 0.003
SVM 1.000 0.137 0.000
Neural Network — 0.215 0.003
Decision Tree 0.018 0.396 0.079

German (417, 23) 2

Logistic Regression 0.361 0.205 —
SVM 0.676 0.218 —
Neural Network — 0.181 0.001
Decision Tree 0.000 0.262 0.001

COMPAS (5771, 8) 3

Logistic Regression 0.468 0.118 0.056
SVM 0.360 0.037 0.020
Neural Network — 0.108 0.053
Decision Tree 0.041 0.087 0.055

Adult (26048, 11) 3

Logistic Regression 2.751 0.109 0.011
SVM 0.963 0.095 0.001
Neural Network — 0.067 0.000
Decision Tree 0.027 0.146 0.081

FairXplainer leads to a more accurate and granular interpretation of the sources of
bias, which is absent in earlier bias explaining methods like SHAP. (4) Finally, as
an application of the FIF formulation, FairXplainer also detects the effects of the
affirmative and punitive actions on the bias of a classifier and the corresponding
tensions between different subsets of features. Here, we elaborate on experimental
results, and defer additional experiments such as applying FairXplainer on other
fairness metrics: equalized odds and predictive parity, and an ablation study of
hyper-parameters: maximum order of intersectionality λ and spline intervals τ to
Appendix D.4.

7.4.1 Performance and Functionality in Estimating FIFs

Accurate Approximation of Bias with FIFs. We compare FairXplainer with
SHAP in estimating statistical parity by summing all FIFs, as dictated by the
decomposability property (Theorem 14). To our best knowledge, the ground truth

129

0 100 200 300 400 500
Instances Solved

10−1

100

101

102

E
xe

cu
ti

on
T

im
e

(s
)

SHAP FairXplainer (λ = 1) FairXplainer (λ = 2)

Figure 7.2: Execution time of different methods for estimating FIFs. FairXplainer
with λ = 1 is more efficient than SHAP, while FairXplainer (λ = 2) requires more
computational effort.

of FIF is not known for real-world datasets and classifiers. As such, we cannot
compare accuracy of FairXplainer and SHAP directly on the estimated FIFs. Since
both methods follow the decomposability property, one way to compare them is to
test accuracy of the sum of estimated FIFs yielding bias/unfairness, as the ground
truth of bias of a classifier can be exactly calculated for a given dataset [17]. We
compute estimation error by taking the absolute difference between the exact and
estimated values of statistical parity, and present median results in Table 7.1.

In general, FairXplainer achieves less estimation with λ = 2 than with λ = 1 in
all datasets and classifiers. This implies that combining intersectional FIFs with
individual FIFs captures bias more accurately than the individual FIFs alone. In
each dataset, FairXplainer (λ = 2) demonstrates less estimation error than SHAP in
all classifiers except in decision trees, denoting that GSA based approach FairXplainer
is more accurate in approximating group fairness metrics through FIFs than the
local explainer SHAP. In decision trees, FairXplainer—which is model-agnostic in
methodology—with λ = 2 often demonstrates a comparable accuracy with SHAP,
especially the optimized tree-based explanation counterpart of SHAP [111]. In the
context of neural networks, SHAP, particularly Kernel-SHAP, often fails to estimate
FIFs within the provided time-limit, while FairXplainer with λ = 2 yields highly
accurate estimates (median estimation error between 0 to 0.053). Therefore, we
conclude that FairXplainer is more accurate in estimating statistical parity using
FIFs than SHAP.

130

2 3 4 5 6
Top Influential Features

−0.50
−0.25

0.00
0.25
0.50
0.75
1.00

C
or

r.
C

oe
ffi

ci
en

t
SHAP FairXplainer (λ = 1)

(a) COMPAS

2 3 4 5 6
Top Influential Features

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
or

r.
C

oe
ffi

ci
en

t

SHAP FairXplainer (λ = 1)

(b) Adult
Figure 7.3: Results on fairness intervention on logistic regression classifiers for COM-
PAS and Adult datasets. Pearson’s correlation coefficient between bias-difference
due to the intervention and FIFs is higher for top ranked influential features by
FairXplainer compared to SHAP.

Execution Time: FairXplainer vs. SHAP We compare the execution time of
FairXplainer vs. SHAP in a cactus plot in Figure 7.2, where a point (x, y) denotes that
a method computes FIFs of x many fairness instances within y seconds. We consider
480 fairness instances from 4 datasets constituting 24 distinct combinations of
sensitive features, 4 classifiers, and 5 cross-validation folds. In Figure 7.2, FairXplainer
with λ = 1 is faster than λ = 2. For example, within 10 seconds, FairXplainer with
λ = 1 solves 443 instances vs. 41 instances with λ = 2. In addition, FairXplainer
with λ = 1 solves all 480 instances compared to 360 instances solved by SHAP. Thus,
FairXplainer with λ = 1 demonstrates its higher efficiency in estimating individual
FIFs compared to SHAP. While estimating intersectional FIFs, FairXplainer also
demonstrates its practical applicability by solving 350 instances within 160 seconds.
Therefore, FairXplainer demonstrates computational efficiency in interpreting group
fairness metrics of real-world datasets and classifiers.

FIFs under Fairness Intervention We consider a fairness intervention strategy
to hide the impact of an individual feature on a classifier and record the correlation
between fairness improvement/reduction of the intervened classifier with the FIF of
the feature. Our intervention strategy of modifying the classifier is different than [42],
where the dataset is modified by replacing features with random values. In particular,
we intervene a logistic regression classifier by setting the coefficient to zero for the
corresponding feature. Intuitively, when the coefficient becomes zero for a feature,

131

0.00 0.05 0.10 0.15 0.20
Influence on SP

priors count
age

juv other count
juv misd count

juv fel count
sex

race
c charge degree

FIFs (λ > 1)

0.1
0.015
0.003
-0.003
-0.001
0
0
0

0.031

0.145

(a) FairXplainer (λ = 1)

0.000.050.100.150.20
Influence on SP

priors count

sex & age

sex & c charge degree

age & priors count

age

juv fel count & c charge degree

sex & juv misd count

Residual FIFs

0.1

-0.077

-0.04

0.026

0.015

0.013

0.012

0.096

0.145

(b) FairXplainer (λ = 2)

0.0 0.2 0.4 0.6

Influence on SP

age

priors count

sex

c charge degree

juv fel count

juv misd count

juv other count

race

0.191

0.189

0.017

0.013

0.004

0.003

0.003

-0.002

0.416

(c) SHAP

Figure 7.4: FIFs for COMPAS dataset on interpreting statistical parity. Both
individual and intersectional FIFs in Figure 7.4b depict sources of bias in detail than
individual FIFs alone in Figure 7.4a. In Figure 7.4c, individual FIFs estimated by
SHAP are far from correctly approximating statistical parity (exact value 0.174).

the prediction of the classifier may become independent on the feature; thereby,
the bias of the classifier may also be independent on the conditional variances of
the feature for different sensitive groups. As a result, a feature with a positive
FIF value (i.e. increases bias) is likely to decrease bias under the intervention, and
vice versa. In Figure 7.3, we report Pearson’s correlation coefficient between the
difference in bias (statistical parity) due to intervention and the FIFs of features in
COMPAS and Adult datasets, where features are sorted in descending order of their
absolute FIFs estimated by FairXplainer and SHAP. In FairXplainer, the correlation
coefficient generally decreases with an increase of top influential features, denoting
that features with higher absolute FIFs highly correlate with bias-differences. SHAP,
in contrast, demonstrates less correlation, specially for the top most influential
features. Therefore, FIFs estimated by FairXplainer shows the potential of being
deployed to design improved fairness algorithms in future.

132

7.4.2 Explainability and Applicability of FIFs

Individual vs. Intersectional FIFs. Now, we aim to understand the importance
of intersectional FIFs over individual FIFs in Figure 7.4. We consider COMPAS
dataset with race ∈ {Caucasian, non-Caucasian} as the sensitive feature, and a
logistic regression classifier to predict whether a person will re-offend crimes within
the next two years. Since the classifier only optimizes training error, it demonstrates
statistical parity of 0.174, i.e. it suggests that a non-Caucasian has 0.174 higher
probability of re-offending crimes than a Caucasian. Next, we investigate the
sources of bias and present individual FIFs in Figure 7.4a, and both individual
and intersectional FIFs in Figure 7.4b. In both figures, we present influential
features and their FIFs in the descending order of absolute values. According
to FairXplainer, the priors count (FIF = 0.1) dominates in increasing statistical
parity—between Caucasian and non-Caucasian, their prior count demonstrates
the maximum difference in the scaled variance of positive prediction. Other non-
sensitive features have almost zero FIFs. However, in Figure 7.4a, higher-order FIFs
(λ > 1) increases statistical parity by 0.031, denoting that the data is correlated
and presenting only individual FIFs is not sufficient for understanding the sources
of bias. For example, while both sex and age individually demonstrate almost zero
influence on bias (Figure 7.4a), their combined effect and intersectional effects with
c-charge degree, priors count, and juvenile miscellaneous count contribute highly on
statistical parity. In contrast to FairXplainer, SHAP only estimates individual FIFs
(Figure 7.4c) and approximates statistical parity with higher error than FairXplainer.
Interestingly, FairXplainer yields FIF estimates of the classifier trained on COMPAS
dataset that significantly matches with the rule-based classifier extracted from the
COMPAS dataset using Certifiably Optimal Rule Lists (CORELS) algorithm [157,
Figure 3]. From Figure 3 in [157], we observe that prior count is the only feature
used individually to predict arrests, while age is paired with sex and prior counts
respectively. While considering second-order intersectionality, FairXplainer (λ = 2)
yields priors count, (sex, age), and (age, priors count) as three of the top four features
that explains the observation of [157] better than SHAP and FairXplainer (λ = 1)
considering only individual features. Therefore, FairXplainer demonstrates a clearer

133

−0.2−0.1 0.0 0.1 0.2 0.3 0.4 0.5
Influence on Statistical Parity

age

sex & c charge degree

sex & age

age & priors count

age & c charge degree

priors count

sex & juv other count

Residual FIFs

0.286

-0.275

-0.232

0.142

0.108

-0.08

0.07

0.4

0.418

(a) Fairness attack (punitive actions)

0.00 0.05 0.10 0.15 0.20
Influence on Statistical Parity

priors count

sex & c charge degree

sex & juv misd count

age & priors count

age & race

sex & juv fel count

juv fel count & c charge degree

Residual FIFs

0.112

-0.03

0.03

0.018

-0.014

-0.011

0.009

0.022

0.135

(b) Fairness enchancing (affirmative actions)

Figure 7.5: Effects of a fairness attack [174] and a fairness enhancing [85] algorithms
on FIFs.

understanding on the sources of bias of a classifier by simultaneously quantifying on
intersectional influences and individual influences .

Quantifying Impacts of Affirmative/Punitive Actions. Continuing on the
experiment in Figure 7.4, we evaluate the effect of fairness attack and enhancing
algorithms on FIFs on COMPAS dataset in Figure 7.5. Without applying any fairness
algorithm, the statistical parity of the classifier is 0.174. Applying a data poisoning
fairness attack [174] increases statistical parity to 0.502 (approximated as 0.418 in
Figure 7.5a), whereas a fairness-enhancing algorithm based on data reweighing [85]
decreases statistical parity to 0.151 (approximated as 0.135 in Figure 7.5b). In
Figure 7.5a, the attack algorithm would be more successful if it could hide the
influence of features with positive FIFs, such as priors count and the intersectional
effects of age and c-charge degree with sex. In contrast, in Figure 7.5b, the fairness
enhancing algorithm can improve by further ameliorating the effect features with
negative FIFs, such as priors count. Thus, FairXplainer demonstrates the potential
as a dissecting tool to undertake necessary steps to improve or worsen fairness of a
classifier.

7.5 Chapter Summary
We discuss fairness influence function (FIF) to measure the effect of input

features on the bias of classifiers on a given dataset. Our approach combines
global sensitivity analysis and group-based fairness metrics in machine learning.

134

Thereby, it is natural in our approach to formulate FIF of intersectional features,
which together with individual FIFs interprets bias with higher granularity. We
theoretically analyze the properties of FIFs and provide an algorithm, FairXplainer,
for estimating FIFs using global variance decomposition and local regression. In
experiments, FairXplainer estimates individual and intersectional FIFs in real-world
datasets and classifiers, approximates bias using FIFs with less estimation error
than earlier methods, demonstrates a high correlation between FIFs and fairness
interventions, and analyzes the impact of fairness enhancing and attack algorithms
on FIFs. The results instantiate FairXplainer as a global, granular, and more accurate
explanation method to understand the sources of bias. Additionally, the resonance
between the rules extracted by CORELS [157] and the most influential features
detected by FairXplainer indicates that FIFs can be exploited in future to create an
explainable proxy of a biased/unbiased classifier. Also, we aim to extend FairXplainer
to compute FIFs for complex data, such as image and text, and design algorithms
leveraging FIFs to yield unbiased decisions.

135

Chapter 8

Conclusion And Future Work
Over the past decade, machine learning has been applied to various safety-critical

domains, and it’s crucial for classifiers to be interpretable, fair, robust, and private to
ensure trustworthy and responsible AI. In this thesis, we focus on the interpretability
and fairness aspects of machine learning and aim to improve the scalability and
accuracy of the underlying problems. We utilize formal methods to make the following
contributions: (i) In interpretable machine learning, we design an incremental
learning technique for interpretable rule-based classifiers of varied expressiveness. (ii)
In fairness in machine learning, we develop a formal probabilistic fairness verification
framework that can verify multiple fairness definitions of classifiers. Additionally, we
develop techniques to interpret fairness metrics by identifying feature combinations
responsible for the bias of the classifier.

To demonstrate the efficacy of our methods, we have constructed open-source tools
and conducted experiments on real-world datasets in machine learning. In the context
of interpretable rule-based machine learning, we have developed an incremental
learning framework, known as IMLI, that scales classification to million-size datasets
while maintaining competitive prediction accuracy and rule size compared to existing
rule-based classifiers. Additionally, in our pursuit of more expressive yet interpretable
classifiers, we have introduced another learning framework, called CRR, for logical
relaxed classification rules that are based on incremental learning. Experimental
results show that CRR is capable of learning more concise and accurate rule-based
classifiers.

Our work on fairness in machine learning introduces two novel probabilistic
fairness verifiers, Justicia and FVGM, which exhibit superior performance in accuracy
and scalability compared to state-of-the-art verifiers. Justicia is a stochastic-SAT-
based verifier that enables scalable verification of fairness for compound sensitive

136

groups of Boolean classifiers, such as decision trees, which was previously infeasible
with existing methods. On the other hand, FVGM takes correlated features into
account and is capable of verifying the fairness of linear classifiers with higher
scalability and accuracy than previous verifiers. Additionally, we discuss a global
sensitivity analysis-based method, FairXplainer, that interprets group fairness metrics
by computing fairness influences of individual and intersectional features. Notably,
FairXplainer approximates bias more accurately using fairness influence functions
(FIFs) and demonstrates a higher correlation of FIFs with fairness intervention than
the local interpretability-based approach.

Our future research is dedicated to developing practical and scalable algorithms
for trustworthy machine learning. Machine learning and artificial intelligence have
been compared to the new electricity, with the potential to transform various aspects
of human life, evident from the overwhelming response to generative AI. Ensuring
fairness and interpretability in deployed machine learning is now more necessary than
ever. To accomplish this, we aim to work in a collaborative environment, gaining
insights into real-world challenges and leveraging advances in the field, alongside
formal methods, to make significant progress. We have identified key research themes
that will guide our work towards this vision.

Fairness and Interpretability As a Service. The goal of modern machine
learning extends beyond learning patterns from large-scale historical data to ensuring
responsible decision-making through careful regulation to establish trustworthiness.
For instance, in a job application scenario, a machine learning algorithm must
be fair across different demographic groups, resilient to non-actionable changes in
candidate profiles, and interpretable to allow candidates to understand the decision-
making process. The long-term research goal of this thesis is to offer fairness and
interpretability as a service with machine learning-based decision-making.

• Interpretability with Guarantees. Our research in interpretable machine
learning spans two-fold directions. (i) Interpretability by design: There
is a growing interest for interpretable machine learning in safety-critical do-
mains [157]. Building upon our interpretable rule-based classifier IMLI, we aim
to enhance learning algorithms for interpretable models in large-scale datasets

137

across supervised, semi-supervised, and unsupervised settings. (ii) Post-hoc
interpretability: To explain black-box predictions, we focus on explanations
with formal guarantees [78, 152, 65]. For example, an explanation model must
be robust, learned in a privacy-preserving manner, and provide the confidence
level of explanations to increase transparency and trust in the decision-making
process.

• Fairness Auditing. Any technology that is publicly used presently undergoes
an audit mechanism, where we understand the impacts and limitations of
using that technology, and why are they caused. Machine learning is becoming
the pervasive technology of our time and the discourse on bias induced by
machine learning systems is attracting attention, e.g. the demonstration of
bias in popular generative machine learning and large language models [1,
128, 183]. As a result, there has been significant research interest in auditing
classifiers for bias, from standard supervised learning to deep neural networks,
computer vision, large language models and so on. Thus, we aim to design
a fairness auditing framework [158, 191] with formal guarantees. There are
three key questions that we aim to investigate in fairness auditing.

1. Which fairness metrics to choose? Fairness in machine learning is
bestowed with multiple notions of fairness. Our first line of investigation
is to categorize different fairness metrics and suggest the best metric
based on application, data, and prevailing policy, similar to “Fairness
Compass” [158]. This would help stakeholders pick the right definition of
fairness for their application.

2. How to quantify bias? Accurate quantification of bias is an important
step towards designing algorithms to mitigate bias. As discussed in the
thesis, fairness verification allows us to formally quantify the bias of a
classifier. To this end, we aim to extend formal fairness verification to
broader classes of fairness metrics, classifiers, and data.

Fairness Metrics. We aim to extend fairness verification of beyond
group fairness, such as individual fairness [82], causal fairness [133, 198],
and counterfactual fairness [190, 33]. Each category of fairness metrics

138

poses distinct challenges in formal verification. For example, verifying
individual fairness is related to verifying robustness of a model. As
such, statistical methods from robustness verification has been applied to
individual fairness [82]. Formal methods, such as SMT-based encoding
is also proposed in this regard [24]. In our research endeavor, we aim to
leverage SAT or quantified Boolean formula (QBF) based verification,
which may improve the scalability of verification.

Broader Classifiers. We aim to extend fairness verification to broader
machine learning classifiers, such as random forests and deep neural
networks. For random forests, we can leverage CNF-based translation of
the ensemble of trees by converting each tree as a CNF and a cardinality
constraint to implement the ranking function of the prediction of multiple
trees. For a special case of binarized neural networks (BNNs) [74], we can
leverage existing CNF encoding and deploy SSAT-based verifier. However,
for general neural networks with continuous parameters, MILP-based
encoding can possibly be explored [123]. In addition, for neural networks,
other surrogate representation beyond CNF or MILP can also be studied
in future. In all cases, fairness verification, particularly for group-based
metrics, relies on an access to efficient counter of CNF/MILP encoding;
thus a dedicated effort to design better counter is a challenging, yet
important research direction to explore.

Complex data. We have explored fairness verification of tabular data; an
important research question is to formally verify the fairness of classifiers
with complex data such as images [131] and languages [1, 128, 183].
For such data, one way to adapt existing verification methods, such as
Justicia, is to apply them on the learned feature representation by the
neural network and propagate verification results back to the input layer
with images or text. In future, we aim to explore this possibility.

3. How to explain bias? We aim to design fair and interpretable algo-
rithms for machine learning. We are interested in how these two goals
relate to each other. This is inline with GDPR’s emphasis on making
models transparent and trustworthy, which is deployed in public. To-

139

wards bridging the gap between fairness and interpretability in predictive
systems, we explore following research questions:

a) How fair are interpretable machine learning models?

b) How can we improve the fairness of interpretable models?

c) How can we apply interpretability to enhance fairness?

d) How can we jointly optimize a classifier for fairness and interpretabil-
ity?

A New Paradigm for Scalability: Trustworthy Machine Learning with
Formal Methods and Beyond. The SAT and SMT revolution has accelerated
the field of formal methods and automated reasoning with powerful solvers for various
problem domains such as SAT/SMT for decision problems, MaxSAT/MaxSMT for
optimization problems, and SSAT for hybrid optimization and counting problems.
By leveraging the clear distinction between the modeling and solving aspects of
SAT, MaxSAT, or SSAT, our goal is to enhance fairness and explainability in
machine learning through an efficient translation into formal methods. Furthermore,
my aim is to explore alternative formulations within formal methods, including
functional analysis, abstract interpretation, and solvers with expressive theories.
These explorations seek to further improve the verification process of machine
learning models. Concurrently, the outcomes of our research have a broader impact,
potentially inspiring advancements in the field of formal methods by benchmarking
trustworthy machine learning.

140

Bibliography
[1] A. Abid, M. Farooqi, and J. Zou, “Persistent anti-muslim bias in large

language models”, in Proceedings of the 2021 AAAI/ACM Conference on AI,
Ethics, and Society, 2021, pp. 298–306.

[2] A. F. M. Agarap, “On breast cancer detection: An application of machine
learning algorithms on the wisconsin diagnostic dataset”, in Proceedings of
the 2nd international conference on machine learning and soft computing,
2018, pp. 5–9.

[3] I. Ajunwa, S. Friedler, C. E. Scheidegger, and S. Venkatasubramanian, “Hiring
by algorithm: Predicting and preventing disparate impact”, Available at SSRN,
2016, URL: http://sorelle.friedler.net/papers/SSRN-id2746078.pdf.

[4] A. Albarghouthi, L. D’Antoni, S. Drews, and A. V. Nori, “FairSquare: Prob-
abilistic verification of program fairness”, Proceedings of the ACM on Pro-
gramming Languages, vol. 1, pp. 1–30, 2017.

[5] J. Alos, C. Ansotegui, and E. Torres, “Learning optimal decision trees using
MaxSAT”,, 2021.

[6] E. Angelino, N. Larus-Stone, D. Alabi, M. Seltzer, and C. Rudin, “Learning
certifiably optimal rule lists for categorical data”, The Journal of Machine
Learning Research, vol. 18, pp. 8753–8830, 2017.

[7] J. Angwin, J. Larson, S. Mattu, and L. Kirchner, “Machine bias risk assess-
ments in criminal sentencing”, ProPublica, May, vol. 23, 2016.

[8] A. Ankan and A. Panda, “Pgmpy: Probabilistic graphical models using
python”, in Proceedings of the 14th Python in Science Conference (SCIPY
2015), Citeseer, 2015.

[9] J. Argelich, C.-M. Li, F. Manya, and J. Planes, “The first and second Max-
SAT evaluations”,, vol. 4, IOS Press, 2008, pp. 251–278.

141

http://sorelle.friedler.net/papers/SSRN-id2746078.pdf

[10] M. G. Augasta and T Kathirvalavakumar, “Rule extraction from neural
networks—a comparative study”, in International Conference on Pattern
Recognition, Informatics and Medical Engineering (PRIME-2012), IEEE,
2012, pp. 404–408.

[11] T. Balyo, M. Heule, and M. Jarvisalo, “SAT competition 2016: Recent devel-
opments”, in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 31, 2017.

[12] N. Barakat and J. Diederich, “Learning-based rule-extraction from support
vector machines”,, not found, 2004.

[13] N. Barakat and J. Diederich, “Eclectic rule-extraction from support vector
machines”,, vol. 2, Citeseer, 2005, pp. 59–62.

[14] S. Barocas, M. Hardt, and A. Narayanan, “Fairness in machine learning”,
NIPS Tutorial, vol. 1, 2017.

[15] O. Bastani, X. Zhang, and A. Solar-Lezama, “Probabilistic verification of fair-
ness properties via concentration”, Proceedings of the ACM on Programming
Languages, vol. 3, pp. 1–27, 2019.

[16] T. Begley, T. Schwedes, C. Frye, and I. Feige, “Explainability for fair machine
learning”, arXiv preprint arXiv:2010.07389, 2020.

[17] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde, K. Kannan,
P. Lohia, J. Martino, S. Mehta, A. Mojsilovic, S. Nagar, K. N. Ramamurthy,
J. Richards, D. Saha, P. Sattigeri, M. Singh, K. R. Varshney, and Y. Zhang,
“AI Fairness 360: An extensible toolkit for detecting, understanding, and
mitigating unwanted algorithmic bias”, Oct. 2018. [Online]. Available: https:
//arxiv.org/abs/1810.01943.

[18] C. Bénesse, F. Gamboa, J.-M. Loubes, and T. Boissin, “Fairness seen as
global sensitivity analysis”, arXiv preprint arXiv:2103.04613, 2021.

[19] B. Benhamou, L. Sais, and P. Siegel, “Two proof procedures for a cardi-
nality based language in propositional calculus”, in Annual Symposium on
Theoretical Aspects of Computer Science, Springer, 1994, pp. 71–82.

[20] O. J. Berg, A. J. Hyttinen, and M. J. Järvisalo, “Applications of MaxSAT in
data analysis”,, EasyChair Publications, 2019.

142

https://arxiv.org/abs/1810.01943
https://arxiv.org/abs/1810.01943

[21] R. Berk, “Accuracy and fairness for juvenile justice risk assessments”, Journal
of Empirical Legal Studies, vol. 16, pp. 175–194, 2019.

[22] P. Besse, E. del Barrio, P. Gordaliza, J.-M. Loubes, and L. Risser, “A survey
of bias in machine learning through the prism of statistical parity”, The
American Statistician, pp. 1–11, 2021.

[23] C. Bessiere, E. Hebrard, and B. O’Sullivan, “Minimising decision tree size as
combinatorial optimisation”, in International Conference on Principles and
Practice of Constraint Programming, Springer, 2009, pp. 173–187.

[24] S. Biswas and H. Rajan, “Fairify: Fairness verification of neural networks”,
arXiv preprint arXiv:2212.06140, 2022.

[25] C. de Boor, “Subroutine package for calculating with b-splines.” Los Alamos
National Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 1971.

[26] K. C. Briggs, “Myers-Briggs type indicator”, Consulting Psychologists Press
Palo Alto, CA, 1976.

[27] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy dis-
parities in commercial gender classification”, in Conference on fairness, ac-
countability and transparency, PMLR, 2018, pp. 77–91.

[28] F. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R. Varshney,
“Optimized pre-processing for discrimination prevention”, in Advances in
Neural Information Processing Systems, 2017, pp. 3992–4001.

[29] G. Cauwenberghs and T. Poggio, “Incremental and decremental support
vector machine learning”, in Proc. of NIPS, 2001.

[30] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi,
“Distribution-aware sampling and weighted model counting for sat”, arXiv
preprint arXiv:1404.2984, 2014.

[31] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable approximate
model counter”, in International Conference on Principles and Practice of
Constraint Programming, Springer, 2013, pp. 200–216.

[32] M. Chavira and A. Darwiche, “On probabilistic inference by weighted model
counting”, Artificial Intelligence, vol. 172, pp. 772–799, 2008.

143

[33] S. Chiappa, “Path-specific counterfactual fairness”, in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 7801–7808.

[34] A. Chouldechova and A. Roth, “A snapshot of the frontiers of fairness in
machine learning”, Communications of the ACM, vol. 63, pp. 82–89, 2020.

[35] L. Ciampiconi, B. Ghosh, J. Scarlett, and K. S. Meel, “A MaxSAT-based
framework for group testing”, in Proceedings of AAAI, 2020.

[36] P. Clark and T. Niblett, “The CN2 induction algorithm”,, 1989.

[37] W. W. Cohen and Y. Singer, “A simple, fast, and effective rule learner”, in
Proc. of AAAI, Orlando, FL, 1999.

[38] W. W. Cohen, “Fast effective rule induction”, in Machine learning proceedings
1995, Elsevier, 1995, pp. 115–123.

[39] M. Craven and J. W. Shavlik, “Extracting tree-structured representations
of trained networks”, in Advances in neural information processing systems,
1996, pp. 24–30.

[40] S. Dash and J. Goncalves, “LPRules: Rule induction in knowledge graphs
using linear programming”,, 2021.

[41] S. Dash, O. Gunluk, and D. Wei, “Boolean decision rules via column genera-
tion”, in Advances in Neural Information Processing Systems, 2018, pp. 4655–
4665.

[42] A. Datta, S. Sen, and Y. Zick, “Algorithmic transparency via quantitative
input influence: Theory and experiments with learning systems”, in 2016
IEEE symposium on security and privacy (SP), IEEE, 2016, pp. 598–617.

[43] J. Diederich, “Rule extraction from support vector machines: An introduc-
tion”, in Rule extraction from support vector machines, Springer, 2008, pp. 3–
31.

[44] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable
machine learning”, arXiv preprint arXiv:1702.08608, 2017.

[45] J. Dressel and H. Farid, “The accuracy, fairness, and limits of predicting
recidivism”, Science advances, vol. 4, eaao5580, 2018.

144

[46] D. Dua and C. Graff, “UCI machine learning repository”, 2017. [Online].
Available: http://archive.ics.uci.edu/ml.

[47] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness through
awareness”, in Proceedings of the 3rd innovations in theoretical computer
science conference, 2012, pp. 214–226.

[48] M. Dyer, “Approximate counting by dynamic programming”, in Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, 2003,
pp. 693–699.

[49] A. Emad, K. R. Varshney, and D. M. Malioutov, “A semiquantitative group
testing approach for learning interpretable clinical prediction rules”, in Proc.
Signal Process. Adapt. Sparse Struct. Repr. Workshop, Cambridge, UK, 2015.

[50] B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, “Machine learning
for medical imaging”,, vol. 37, Radiological Society of North America, 2017,
pp. 505–515.

[51] B. Eshete, “Making machine learning trustworthy”, Science, vol. 373, no. 6556,
pp. 743–744, 2021.

[52] European Commission, “Better regulation toolbox”, Brussels, Belgium, 2021.

[53] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-valued
attributes for classification learning”,, 1993.

[54] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubra-
manian, “Certifying and removing disparate impact”, in proceedings of the
21th ACM SIGKDD international conference on knowledge discovery and
data mining, 2015, pp. 259–268.

[55] M. L. Fisher, “The lagrangian relaxation method for solving integer program-
ming problems”,, vol. 27, INFORMS, 1981, pp. 1–18.

[56] D. J. Fremont, M. N. Rabe, and S. A. Seshia, “Maximum model counting.”
In AAAI, 2017, pp. 3885–3892.

[57] J. Fürnkranz, “Separate-and-conquer rule learning”,, vol. 13, Springer, 1999,
pp. 3–54.

145

http://archive.ics.uci.edu/ml

[58] B. F. Gage, A. D. Waterman, W. Shannon, M. Boechler, M. W. Rich, and
M. J. Radford, “Validation of clinical classification schemes for predicting
stroke: Results from the national registry of atrial fibrillation”, Jama, vol. 285,
pp. 2864–2870, 2001.

[59] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: Testing software for
discrimination”, in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, 2017, pp. 498–510.

[60] P. Garg, J. Villasenor, and V. Foggo, “Fairness metrics: A comparative
analysis”, in 2020 IEEE International Conference on Big Data (Big Data),
IEEE, 2020, pp. 3662–3666.

[61] A. Gawande, “Checklist manifesto, the (HB)”, Penguin Books India, 2010.

[62] B. Ghosh and K. S. Meel, “IMLI: An incremental framework for MaxSAT-
based learning of interpretable classification rules”, in Proceedings of AAAI/ACM
Conference on AI, Ethics, and Society(AIES), 2019.

[63] N. Gill, P. Hall, K. Montgomery, and N. Schmidt, “A responsible machine
learning workflow with focus on interpretable models, post-hoc explanation,
and discrimination testing”,, vol. 11, Multidisciplinary Digital Publishing
Institute, 2020, p. 137.

[64] G. Grimmett and D. Stirzaker, “Probability and random processes”, Oxford
university press, 2020.

[65] R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and F. Gian-
notti, “Local rule-based explanations of black box decision systems”,, 2018.

[66] T. Hailesilassie, “Rule extraction algorithm for deep neural networks: A
review”,, 2016.

[67] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The weka data mining software: An update”, ACM SIGKDD explorations
newsletter, vol. 11, pp. 10–18, 2009.

[68] T. Han, S. Srinivas, and H. Lakkaraju, “Which explanation should i choose? a
function approximation perspective to characterizing post hoc explanations”,
arXiv preprint arXiv:2206.01254, 2022.

146

[69] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in super-
vised learning”, in Advances in neural information processing systems, 2016,
pp. 3315–3323.

[70] J. Herman and W. Usher, “SALib: An open-source python library for sen-
sitivity analysis”, The Journal of Open Source Software, vol. 2, no. 9, 2017.
[Online]. Available: https://doi.org/10.21105/joss.00097.

[71] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent”,, vol. 14, 2012,
p. 2.

[72] X. Hua, H. Xu, J. Blanchet, and V. Nguyen, “Human imperceptible attacks
and applications to improve fairness”, arXiv preprint arXiv:2111.15603, 2021.

[73] J. Huang et al., “Combining knowledge compilation and search for conformant
probabilistic planning.” In ICAPS, 2006, pp. 253–262.

[74] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks”, Advances in neural information processing systems, vol. 29,
2016.

[75] A. Ignatiev, E. Lam, P. J. Stuckey, and J. Marques-Silva, “A scalable two
stage approach to computing optimal decision sets”,, 2021.

[76] A. Ignatiev, J. Marques-Silva, N. Narodytska, and P. J. Stuckey, “Reasoning-
based learning of interpretable ML models”, in International Joint Conference
on Artificial Intelligence (IJCAI), 2021.

[77] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python toolkit for
prototyping with SAT oracles”, in SAT, 2018, pp. 428–437. [Online]. Available:
https://doi.org/10.1007/978-3-319-94144-8_26.

[78] A. Ignatiev, N. Narodytska, and J. Marques-Silva, “Abduction-based expla-
nations for machine learning models”, in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 1511–1519.

[79] A. Ignatiev, F. Pereira, N. Narodytska, and J. Marques-Silva, “A sat-based
approach to learn explainable decision sets”, in International Joint Conference
on Automated Reasoning, Springer, 2018, pp. 627–645.

147

https://doi.org/10.21105/joss.00097
https://doi.org/10.1007/978-3-319-94144-8_26

[80] Y. Izza, A. Ignatiev, and J. Marques-Silva, “On explaining decision trees”,,
2020.

[81] M. Janota and A. Morgado, “SAT-based encodings for optimal decision trees
with explicit paths”, in International Conference on Theory and Applications
of Satisfiability Testing, Springer, 2020, pp. 501–518.

[82] P. G. John, D. Vijaykeerthy, and D. Saha, “Verifying individual fairness in
machine learning models”, arXiv preprint arXiv:2006.11737, 2020.

[83] J. K. Johnson, D. M. Malioutov, and A. S. Willsky, “Lagrangian relaxation
for MAP estimation in graphical models”,, 2007.

[84] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure,
privacy-preserving and federated machine learning in medical imaging”,,
vol. 2, Nature Publishing Group, 2020, pp. 305–311.

[85] F. Kamiran and T. Calders, “Data preprocessing techniques for classification
without discrimination”, Knowledge and Information Systems, vol. 33, pp. 1–
33, 2012.

[86] F. Kamiran, A. Karim, and X. Zhang, “Decision theory for discrimination-
aware classification”, in 2012 IEEE 12th International Conference on Data
Mining, IEEE, 2012, pp. 924–929.

[87] J. Kleinberg and E. Tardos, “Algorithm design”,, 2006.

[88] D. Koller and N. Friedman, “Probabilistic graphical models: principles and
techniques”, MIT press, 2009.

[89] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimization: Dis-
tributed optimization beyond the datacenter”,, 2015.

[90] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence”,, 2016.

[91] I. Kononenko, “Machine learning for medical diagnosis: History, state of the
art and perspective”,, vol. 23, Elsevier, 2001, pp. 89–109.

[92] R. S. S. Kumar, D. R. O’Brien, K. Albert, and S. Vilojen, “Law and adversarial
machine learning”,, 2018.

148

[93] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets: A
joint framework for description and prediction”, in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data
mining, 2016, pp. 1675–1684.

[94] H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Interpretable &
explorable approximations of black box models”,, 2017.

[95] H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Faithful and cus-
tomizable explanations of black box models”, in Proc. of AIES, 2019.

[96] F. J. Landy, J. L. Barnes, and K. R. Murphy, “Correlates of perceived fairness
and accuracy of performance evaluation.” Journal of Applied psychology,
vol. 63, p. 751, 1978.

[97] N.-Z. Lee and J.-H. R. Jiang, “Towards formal evaluation and verification of
probabilistic design”, IEEE Transactions on Computers, vol. 67, pp. 1202–
1216, 2018.

[98] N.-Z. Lee, Y.-S. Wang, and J.-H. R. Jiang, “Solving stochastic boolean
satisfiability under random-exist quantification.” In IJCAI, 2017, pp. 688–
694.

[99] N.-Z. Lee, Y.-S. Wang, and J.-H. R. Jiang, “Solving exist-random quantified
stochastic boolean satisfiability via clause selection.” In IJCAI, 2018, pp. 1339–
1345.

[100] C. Lemaréchal, “Lagrangian relaxation”, in Computational combinatorial
optimization, Springer, 2001, pp. 112–156.

[101] B. Letham, C. Rudin, T. H. McCormick, and D. Madigan, “Interpretable
classifiers using rules and Bayesian analysis: Building a better stroke prediction
model”,, vol. 9, Institute of Mathematical Statistics, 2015, pp. 1350–1371.

[102] G. Li, H. Rabitz, P. E. Yelvington, O. O. Oluwole, F. Bacon, C. E. Kolb,
and J. Schoendorf, “Global sensitivity analysis for systems with independent
and/or correlated inputs”, The journal of physical chemistry A, vol. 114,
no. 19, pp. 6022–6032, 2010.

149

[103] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training
for stochastic optimization”, in Proceedings of the 20th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, 2014, pp. 661–
670.

[104] P. Li and H. Liu, “Achieving fairness at no utility cost via data reweighing
with influence”, in International Conference on Machine Learning, PMLR,
2022, pp. 12 917–12 930.

[105] P.-C. K. Lin and S. P. Khatri, “Application of Max-SAT-based ATPG to
optimal cancer therapy design”,, vol. 13, Springer, 2012, pp. 1–10.

[106] M. L. Littman, S. M. Majercik, and T. Pitassi, “Stochastic boolean satisfia-
bility”, Journal of Automated Reasoning, vol. 27, pp. 251–296, 2001.

[107] C. Loader, “Smoothing: Local regression techniques”, in Handbook of compu-
tational statistics, Springer, 2012, pp. 571–596.

[108] C. Loader, “Local regression and likelihood”, Springer Science & Business
Media, 2006.

[109] R. Luckin, “Machine Learning and Human Intelligence: The future of educa-
tion for the 21st century.” ERIC, 2018.

[110] S. M. Lundberg, “Explaining quantitative measures of fairness”, in Fair &
Responsible AI Workshop@ CHI2020, 2020.

[111] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair,
R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From local explanations
to global understanding with explainable ai for trees”, Nature Machine
Intelligence, vol. 2, no. 1, pp. 2522–5839, 2020.

[112] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions”, in Proceedings of the 31st international conference on neural
information processing systems, 2017, pp. 4768–4777.

[113] S. M. Majercik, “Appssat: Approximate probabilistic planning using stochas-
tic satisfiability”, International Journal of Approximate Reasoning, vol. 45,
pp. 402–419, 2007.

150

[114] S. M. Majercik and B. Boots, “Dc-ssat: A divide-and-conquer approach to
solving stochastic satisfiability problems efficiently”, in AAAI, 2005, pp. 416–
422.

[115] D. Malioutov and K. S. Meel, “MLIC: A MaxSAT-based framework for
learning interpretable classification rules”, in International Conference on
Principles and Practice of Constraint Programming, Springer, 2018, pp. 312–
327.

[116] D. Malioutov and K. Varshney, “Exact rule learning via boolean compressed
sensing”, in International Conference on Machine Learning, PMLR, 2013,
pp. 765–773.

[117] D. Martens, J. Huysmans, R. Setiono, J. Vanthienen, and B. Baesens, “Rule
extraction from support vector machines: An overview of issues and applica-
tion in credit scoring”,, Springer, 2008, pp. 33–63.

[118] B. Martinez Neda, Y. Zeng, and S. Gago-Masague, “Using machine learning
in admissions: Reducing human and algorithmic bias in the selection process”,
in Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education, 2021, pp. 1323–1323.

[119] R. Martins, V. Manquinho, and I. Lynce, “Open-WBO: A modular MaxSAT
solver”, in International Conference on Theory and Applications of Satisfia-
bility Testing, Springer, 2014, pp. 438–445.

[120] D. Masters and C. Luschi, “Revisiting small batch training for deep neural
networks”,, 2018.

[121] A. C. McGinley, “Ricci v. destefano: A masculinities theory analysis”, Harv.
JL & Gender, vol. 33, p. 581, 2010.

[122] N. Mehrabi, M. Naveed, F. Morstatter, and A. Galstyan, “Exacerbating
algorithmic bias through fairness attacks”, arXiv preprint arXiv:2012.08723,
2020.

[123] S. Mistry, I. Saha, and S. Biswas, “An milp encoding for efficient verification
of quantized deep neural networks”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 4445–4456,
2022.

151

[124] M. Moradi and M. Samwald, “Post-hoc explanation of black-box classifiers
using confident itemsets”,, vol. 165, Elsevier, 2021, p. 113 941.

[125] S. K. Murakonda, R. Shokri, and G. Theodorakopoulos, “Quantifying the
privacy risks of learning high-dimensional graphical models”, in International
Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp. 2287–
2295.

[126] I. B. Myers, “The Myers-Briggs type indicator: Manual (1962).”, Consulting
Psychologists Press, 1962.

[127] R. Nabi and I. Shpitser, “Fair inference on outcomes”, in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[128] M. Nadeem, A. Bethke, and S. Reddy, “Stereoset: Measuring stereotypical
bias in pretrained language models”, arXiv preprint arXiv:2004.09456, 2020.

[129] N. Narodytska, A. Ignatiev, F. Pereira, J. Marques-Silva, and I. RAS, “Learn-
ing optimal decision trees with sat.” In IJCAI, 2018, pp. 1362–1368.

[130] H. Núñez, C. Angulo, and A. Català, “Rule extraction from support vector
machines.” In Esann, 2002, pp. 107–112.

[131] O. Nuriel, S. Benaim, and L. Wolf, “Permuted adain: Reducing the bias to-
wards global statistics in image classification”, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp. 9482–
9491.

[132] Office of the Science Advisor, Council for Regulatory Environmental Modeling,
“Guidance on the development, evaluation, and application of environmental
models”, U.S. Environmental Protection Agency, Washington, USA, 2009,
https://web.archive.org/web/20110426180258/http://www.epa.gov/

CREM/library/cred_guidance_0309.pdf.

[133] W. Pan, S. Cui, J. Bian, C. Zhang, and F. Wang, “Explaining algorithmic
fairness through fairness-aware causal path decomposition”, in Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 1287–1297.

[134] C. H. Papadimitriou, “Games against nature”, Journal of Computer and
System Sciences, vol. 31, pp. 288–301, 1985.

152

https://web.archive.org/web/20110426180258/http://www.epa.gov/CREM/library/cred_guidance_0309.pdf
https://web.archive.org/web/20110426180258/http://www.epa.gov/CREM/library/cred_guidance_0309.pdf

[135] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of
security and privacy in machine learning”, arXiv preprint arXiv:1611.03814,
2016.

[136] E. Pastor and E. Baralis, “Explaining black box models by means of local
rules”, in Proceedings of the 34th ACM/SIGAPP symposium on applied
computing, 2019, pp. 510–517.

[137] J. Pearl, “Bayesian netwcrks: A model cf self-activated memory for evidential
reasoning”, in Proceedings of the 7th conference of the Cognitive Science
Society, University of California, Irvine, CA, USA, 1985, pp. 15–17.

[138] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python”, Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[139] I. Peled, F. Rodrigues, and F. C. Pereira, “Model-based machine learning
for transportation”, in Mobility patterns, big data and transport analytics,
Elsevier, 2019, pp. 145–171.

[140] W. W. Peterson and E. J. Weldon, “Error-correcting codes”, MIT press, 1972.

[141] T. Philipp and P. Steinke, “Pblib–a library for encoding pseudo-boolean
constraints into cnf”, in International Conference on Theory and Applications
of Satisfiability Testing, Springer, 2015, pp. 9–16.

[142] D. Pisinger, “Linear time algorithms for knapsack problems with bounded
weights”, Journal of Algorithms, vol. 33, no. 1, pp. 1–14, 1999.

[143] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger, “On
fairness and calibration”, arXiv preprint arXiv:1709.02012, 2017.

[144] J. R. Quinlan, “Induction of decision trees”,, vol. 1, Springer, 1986, pp. 81–
106.

[145] J. R. Quinlan, “Simplifying decision trees”,, vol. 27, Elsevier, 1987, pp. 221–
234.

[146] J. R. Quinlan, “C4. 5: Programming for machine learning”,, 1993.

153

[147] E. Raff, J. Sylvester, and S. Mills, “Fair forests: Regularized tree induction
to minimize model bias”, in Proceedings of the 2018 AAAI/ACM Conference
on AI, Ethics, and Society, 2018, pp. 243–250.

[148] D. Rajapaksha, C. Bergmeir, and W. Buntine, “LoRMIkA: Local rule-based
model interpretability with K-optimal associations”,, vol. 540, Elsevier, 2020,
pp. 221–241.

[149] L. Ralaivola and F. d’Alché Buc, “Incremental support vector machine
learning: A local approach”, in Proc. of ICANN, 2001.

[150] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python toolbox to
benchmark the robustness of machine learning models”, arXiv preprint
arXiv:1707.04131, 2017.

[151] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you? ex-
plaining the predictions of any classifier”, in Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
2016, pp. 1135–1144.

[152] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-
agnostic explanations”, in Proceedings of the AAAI conference on artificial
intelligence, vol. 32, 2018.

[153] R. L. Rivest, “Learning decision lists”,, vol. 2, Springer, 1987, pp. 229–246.

[154] N. Robinson, C. Gretton, D. N. Pham, and A. Sattar, “Partial weighted
MaxSAT for optimal planning”, in Pacific rim international conference on
artificial intelligence, Springer, 2010, pp. 231–243.

[155] A. E. Roth, “The Shapley value: essays in honor of Lloyd S. Shapley”,
Cambridge University Press, 1988.

[156] O. Roussel and V. M. Manquinho, “Pseudo-boolean and cardinality con-
straints.” Handbook of satisfiability, vol. 185, pp. 695–733, 2009.

[157] C. Rudin, “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead”,, vol. 1, Nature Publishing
Group, 2019, pp. 206–215.

154

[158] B. Ruf and M. Detyniecki, “Towards the right kind of fairness in ai”, arXiv
preprint arXiv:2102.08453, 2021.

[159] S. Ruping, “Incremental learning with support vector machines”, in Proc. of
ICDM, 2001.

[160] A. Saltelli, G. Bammer, I. Bruno, E. Charters, M. Di Fiore, E. Didier, W.
Nelson Espeland, J. Kay, S. Lo Piano, D. Mayo, et al., “Five ways to ensure
that models serve society: A manifesto”, 2020.

[161] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, and S. Tarantola, “Global sensitivity analysis: the primer”, John
Wiley & Sons, 2008.

[162] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi, “Combining
component caching and clause learning for effective model counting.” SAT,
vol. 4, 7th, 2004.

[163] M. Sato and H. Tsukimoto, “Rule extraction from neural networks via decision
tree induction”, in IJCNN’01. International Joint Conference on Neural
Networks. Proceedings (Cat. No. 01CH37222), IEEE, vol. 3, 2001, pp. 1870–
1875.

[164] A. Schidler and S. Szeider, “SAT-based decision tree learning for large data
sets”, in Proceedings of AAAI, vol. 21, 2021.

[165] L. Schumaker, “Spline functions: basic theory”, Cambridge University Press,
2007.

[166] R. Setiono and H. Liu, “Understanding neural networks via rule extraction”,
in IJCAI, Citeseer, vol. 1, 1995, pp. 480–485.

[167] P. Shati, E. Cohen, and S. McIlraith, “SAT-based approach for learning
optimal decision trees with non-binary features”, in 27th International Con-
ference on Principles and Practice of Constraint Programming (CP 2021),
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[168] J. P. M. Silva and K. A. Sakallah, “GRASP—a new search algorithm for
satisfiability”, in The Best of ICCAD, Springer, 2003, pp. 73–89.

155

[169] C. Sinz, “Towards an optimal cnf encoding of boolean cardinality constraints”,
in International conference on principles and practice of constraint program-
ming, Springer, 2005, pp. 827–831.

[170] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling LIME and
SHAP: Adversarial attacks on post hoc explanation methods”, in Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society, 2020, pp. 180–186.

[171] J. Sliwinski, M. Strobel, and Y. Zick, “Axiomatic characterization of data-
driven influence measures for classification”, in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 718–725.

[172] I. M. Sobol’, “On sensitivity estimation for nonlinear mathematical models”,
Matematicheskoe modelirovanie, vol. 2, no. 1, pp. 112–118, 1990.

[173] I. M. Sobol’, “Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates”, Mathematics and computers in simulation,
vol. 55, no. 1-3, pp. 271–280, 2001.

[174] D. Solans, B. Biggio, and C. Castillo, “Poisoning attacks on algorithmic
fairness”, arXiv preprint arXiv:2004.07401, 2020.

[175] G. Su, D. Wei, K. R. Varshney, and D. M. Malioutov, “Learning sparse two-
level Boolean rules”, in 2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP), IEEE, 2016, pp. 1–6.

[176] H. Surden, “Machine learning and law”,, vol. 89, HeinOnline, 2014, p. 87.

[177] N. A. Syed, S. Huan, L. Kah, and K. Sung, “Incremental learning with
support vector machines”,, Citeseer, 1999.

[178] N. Tollenaar and P. Van der Heijden, “Which method predicts recidivism
best?: A comparison of statistical, machine learning and data mining predic-
tive models”, Journal of the Royal Statistical Society: Series A (Statistics in
Society), vol. 176, pp. 565–584, 2013.

[179] K. Toraichi, K. Katagishi, I. Sekita, and R. Mori, “Computational complexity
of spline interpolation”, International journal of systems science, vol. 18,
no. 5, pp. 945–954, 1987.

156

[180] G. S. Tseitin, “On the complexity of derivation in propositional calculus”, in
Automation of reasoning, Springer, 1983, pp. 466–483.

[181] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “OpenML: Networked
science in machine learning”,, vol. 15, New York, NY, USA: ACM, 2013,
pp. 49–60. [Online]. Available: http://doi.acm.org/10.1145/2641190.
2641198.

[182] S. Verma and J. Rubin, “Fairness definitions explained”, in 2018 IEEE/ACM
International Workshop on Software Fairness (FairWare), IEEE, 2018, pp. 1–
7.

[183] J. Vig, S. Gehrmann, Y. Belinkov, S. Qian, D. Nevo, Y. Singer, and S. Shieber,
“Investigating gender bias in language models using causal mediation analysis”,
Advances in neural information processing systems, vol. 33, pp. 12 388–12 401,
2020.

[184] R. Walter, C. Zengler, and W. Küchlin, “Applications of MaxSAT in au-
tomotive configuration.” In Configuration Workshop, Citeseer, vol. 1, 2013,
p. 21.

[185] A. Wang, V. V. Ramaswamy, and O. Russakovsky, “Towards intersectionality
in machine learning: Including more identities, handling underrepresenta-
tion, and performing evaluation”, in 2022 ACM Conference on Fairness,
Accountability, and Transparency, 2022, pp. 336–349.

[186] F. Wang and C. Rudin, “Falling rule lists”, in Artificial Intelligence and
Statistics, PMLR, 2015, pp. 1013–1022.

[187] J. Wang, X. E. Wang, and Y. Liu, “Understanding instance-level impact
of fairness constraints”, in International Conference on Machine Learning,
PMLR, 2022, pp. 23 114–23 130.

[188] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. MacNeille,
“A Bayesian framework for learning rule sets for interpretable classification”,,
vol. 18, JMLR. org, 2017, pp. 2357–2393.

[189] G. J. Woeginger and Z. Yu, “On the equal-subset-sum problem”, Information
Processing Letters, vol. 42, pp. 299–302, 1992.

157

http://doi.acm.org/10.1145/2641190.2641198
http://doi.acm.org/10.1145/2641190.2641198

[190] Y. Wu, L. Zhang, and X. Wu, “Counterfactual fairness: Unidentification,
bound and algorithm.” In IJCAI, 2019, pp. 1438–1444.

[191] T. Yan and C. Zhang, “Active fairness auditing”, in International Conference
on Machine Learning, PMLR, 2022, pp. 24 929–24 962.

[192] J. Yu, A. Ignatiev, P. L. Bodic, and P. J. Stuckey, “Optimal decision lists
using SAT”,, 2020.

[193] J. Yu, A. Ignatiev, P. J. Stuckey, and P. L. Bodic, “Computing optimal
decision sets with sat”, arXiv preprint arXiv:2007.15140, 2020.

[194] M. B. Zafar, I. Valera, M. G. Rogriguez, and K. P. Gummadi, “Fairness
constraints: Mechanisms for fair classification”, in Artificial Intelligence and
Statistics, 2017, pp. 962–970.

[195] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review of
machine learning and IoT in smart transportation”,, vol. 11, Multidisciplinary
Digital Publishing Institute, 2019, p. 94.

[196] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair
representations”, in International Conference on Machine Learning, 2013,
pp. 325–333.

[197] B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating unwanted biases with
adversarial learning”, in Proceedings of the 2018 AAAI/ACM Conference on
AI, Ethics, and Society, 2018, pp. 335–340.

[198] J. Zhang and E. Bareinboim, “Fairness in decision-making—the causal ex-
planation formula”, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018.

[199] W. Zhang and E. Ntoutsi, “Faht: An adaptive fairness-aware decision tree
classifier”, arXiv preprint arXiv:1907.07237, 2019.

[200] Z.-H. Zhou, “Rule extraction: Using neural networks or for neural networks?”,
vol. 19, Springer, 2004, pp. 249–253.

[201] J. R. Zilke, E. L. Mencía, and F. Janssen, “Deepred–rule extraction from
deep neural networks”, in International Conference on Discovery Science,
Springer, 2016, pp. 457–473.

158

[202] I. Zliobaite, “On the relation between accuracy and fairness in binary classifi-
cation”, arXiv preprint arXiv:1505.05723, 2015.

159

Appendix A

Interpretable Classification Rules

A.1 Performance Comparison: Incremental vs.
Non-incremental Encoding

We compare the performance of two encoding techniques, naïve non-incremental
encoding and efficient incremental encoding in IMLI, for learning interpretable CNF
classification rules in datasets of various sizes. We demonstrate the scalability
results using a cactus plot in Figure A.1. Each point (x, y) represents the ability
to solve x classification instances within y seconds. We test both incremental
and non-incremental encoding using 360 instances for each dataset with varying
hyper-parameters. As the dataset size increases, the non-incremental encoding
times out, failing to solve all 360 instances within 1000 seconds in the Credit
and Adult datasets. In contrast, the incremental encoding in IMLI demonstrates
higher scalability, solving all 360 instances in less than 10 seconds in the Titanic
dataset, and efficiently solving all 360 instances within the timeout in the Credit and
Adult datasets. Hence, the incremental encoding is superior in terms of scalability
compared to the non-incremental encoding.

In Figure A.2, we compare both non-incremental and incremental encoding in
terms of median training time, rule size, test accuracy, and train accuracy over ten
cross validation folds. In all datasets, the incremental encoding demonstrates higher
efficiency than the non-incremental encoding by requiring less training time. In
large datasets, such as Magic, Credit, and Adult, the non-incremental encoding
always times out, thereby producing zero-size rules because of failing to solve the
MaxSAT query. As a result, the accuracy of the non-incremental encoding is also less
than the incremental encoding in large datasets. In small datasets, the incremental

160

0 50 100 150 200 250 300 350
Instances solved

10
1

10
0

10
1

10
2

10
3

Tr
ai

ni
ng

 ti
m

e
(s

)

Parkinsons: (195, 202)
Non-incremental
Incremental

0 50 100 150 200 250 300 350
Instances solved

10
0

10
1

10
2

10
3

Tr
ai

ni
ng

 ti
m

e
(s

)

WDBC: (569, 278)

Non-incremental
Incremental

0 50 100 150 200 250 300 350
Instances solved

10
0

10
1

10
2

10
3

Tr
ai

ni
ng

 ti
m

e
(s

)

Pima: (768, 83)

Non-incremental
Incremental

0 50 100 150 200 250 300 350
Instances solved

10
1

10
0

10
1

10
2

10
3

Tr
ai

ni
ng

 ti
m

e
(s

)

Titanic: (1043, 38)

Non-incremental
Incremental

0 50 100 150 200 250 300 350
Instances solved

10
2

10
3

Tr
ai

ni
ng

 ti
m

e
(s

)

MAGIC: (19020, 100)

Non-incremental
Incremental

0 50 100 150 200 250 300 350
Instances solved

10
3

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

Tr
ai

ni
ng

 ti
m

e
(s

)

Tom's HW: (28179, 946)

Non-incremental
Incremental

0 50 100 150 200 250 300 350
Instances solved

10
2

10
3

Tr
ai

ni
ng

 ti
m

e
(s

)

Credit: (30000, 199)

Non-incremental
Incremental

0 50 100 150 200 250 300 350
Instances solved

10
2

10
3

Tr
ai

ni
ng

 ti
m

e
(s

)
Adult: (32561, 94)

Non-incremental
Incremental

Figure A.1: Detailed scalability results of incremental vs. non-incremental encoding
in IMLI, presented as a cactus plot. As datasets become large, the non-incremental
encoding suffers from poor scalability by witnessing time-outs more frequently than
the incremental encoding IMLI.

encoding demonstrates a competitive accuracy and rule size with the non-incremental
encoding. Therefore, the incremental encoding in IMLI demonstrates its effectiveness
in training time, accuracy, and rule size over the non-incremental encoding.

A.2 Representative Interpretable Classifiers
In the following, we present representative CNF classifiers learned in different

datasets. In each dataset, if an input satisfies the CNF formula, it is predicted class
1 and vice-versa.
Parkinsons:

0.3 ≤ Average vocal fundamental frequency < 0.4 OR 0.5 ≤ Average vocal funda-
mental frequency < 0.6 OR 0.1 ≤ Maximum vocal fundamental frequency < 0.2
OR 0.5 ≤ Minimum vocal fundamental frequency < 0.6 OR 0.1 ≤ Shimmer:APQ5

161

Parkinsons
195 | 202

WDBC
569 | 278

Pima
768 | 83

Titanic
1043 | 38

MAGIC
19020 | 100

Tom's HW
28179 | 946

Credit
30000 | 199

Adult
32561 | 94

Dataset

10
0

10
1

10
2

10
3

Tr
ai

ni
ng

 ti
m

e
(s

)

Non-incremental Incremental

Parkinsons
195 | 202

WDBC
569 | 278

Pima
768 | 83

Titanic
1043 | 38

MAGIC
19020 | 100

Tom's HW
28179 | 946

Credit
30000 | 199

Adult
32561 | 94

Dataset

0

10

20

30

40

50

60

70

R
ul

e
si

ze

Non-incremental Incremental

Parkinsons
195 | 202

WDBC
569 | 278

Pima
768 | 83

Titanic
1043 | 38

MAGIC
19020 | 100

Tom's HW
28179 | 946

Credit
30000 | 199

Adult
32561 | 94

Dataset

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

Non-incremental Incremental

Parkinsons
195 | 202

WDBC
569 | 278

Pima
768 | 83

Titanic
1043 | 38

MAGIC
19020 | 100

Tom's HW
28179 | 946

Credit
30000 | 199

Adult
32561 | 94

Dataset

0

20

40

60

80

100

Tr
ai

n
A

cc
ur

ac
y

Non-incremental Incremental

Figure A.2: Comparison of training time, rule size, and test and train accuracy
between non-incremental vs. incremental encoding in IMLI. In X-axis, the dimension
of the dataset (#samples | #features) is shown below dataset name. In large datasets,
non-incremental encoding often times out and learns zero-size classification rules
yielding less test and train accuracy than the incremental encoding.

162

< 0.2 OR 0.5 ≤ DFA < 0.6 OR 0.3 ≤ spread1 < 0.4 OR 0.8 ≤ spread2 < 0.9 OR
0.3 ≤ PPE < 0.4 OR NOT -∞ ≤ MDVP:APQ < 0.1 AND

NOT 0.8 ≤ Average vocal fundamental frequency < 0.9

WDBC:

0.4 ≤ perimeter < 0.5 OR 0.8 ≤ symmetry < 0.9 OR 0.5 ≤ largest concave
points < 0.6 OR 0.6 ≤ largest concave points < 0.7 OR 0.7 ≤ largest concave
points < 0.8 OR 0.6 ≤ largest symmetry < 0.7 OR NOT -∞≤ area SE < 0.1AND

0.4 ≤ texture < 0.5 OR 0.5 ≤ texture < 0.6 OR 0.5 ≤ perimeter < 0.6 OR
0.5 ≤ smoothness < 0.6 OR 0.4 ≤ concave points < 0.5 OR 0.5 ≤ concave points
< 0.6 OR 0.2 ≤ largest concavity < 0.3 OR 0.6 ≤ largest concave points < 0.7
OR 0.7 ≤ largest concave points < 0.8 OR 0.4 ≤ largest symmetry < 0.5 OR 0.6
≤ largest symmetry < 0.7

Pima:

x1 = 11 OR x1 = 14 OR x1 = 15 OR 0.7 ≤ x2 < 0.8 OR 0.8 ≤ x2 < 0.9
OR 0.9 ≤ x2 < ∞ OR 0.9 ≤ x3 < ∞ OR 0.4 ≤ x5 < 0.5 OR 0.7 ≤ x5 < 0.8
OR 0.7 ≤ x6 < 0.8 OR 0.4 ≤ x7 < 0.5 OR 0.5 ≤ x7 < 0.6 OR 0.9 ≤ x7 <∞ AND

x1 = 7 OR x1 = 8 OR 0.6 ≤ x2 < 0.7 OR 0.8 ≤ x2 < 0.9 OR 0.9 ≤ x2 <

∞ OR -∞ ≤ x3 < 0.1 OR 0.7 ≤ x3 < 0.8 OR 0.9 ≤ x3 < ∞ OR 0.2 ≤ x5 < 0.3
OR 0.7 ≤ x6 < 0.8 OR 0.1 ≤ x7 < 0.2 OR 0.3 ≤ x7 < 0.4 OR 0.4 ≤ x8 < 0.5
OR 0.8 ≤ x8 < 0.9 AND

x1 = 2 OR x1 = 6 OR x1 = 7 OR x1 = 9 OR -∞ ≤ x3 < 0.1 OR 0.8 ≤
x3 < 0.9 OR 0.1 ≤ x5 < 0.2 OR 0.2 ≤ x5 < 0.3 OR 0.7 ≤ x5 < 0.8 OR 0.5 ≤ x6
< 0.6 OR 0.6 ≤ x6 < 0.7 OR 0.4 ≤ x7 < 0.5 OR 0.9 ≤ x7 < ∞ OR 0.1 ≤ x8 <
0.2 OR 0.3 ≤ x8 < 0.4 OR 0.6 ≤ x8 < 0.7 OR 0.8 ≤ x8 < 0.9 AND

163

x1 = 8 OR 0.5 ≤ x2 < 0.6 OR 0.8 ≤ x2 < 0.9 OR 0.9 ≤ x2 < ∞ OR 0.7
≤ x3 < 0.8 OR -∞ ≤ x4 < 0.1 OR 0.1 ≤ x5 < 0.2 OR 0.3 ≤ x5 < 0.4 OR 0.5 ≤
x7 < 0.6 OR 0.1 ≤ x8 < 0.2 OR 0.4 ≤ x8 < 0.5 OR 0.8 ≤ x8 < 0.9

Titanic:

-∞ ≤ age < 0.1 OR 0.9 ≤ age < ∞ OR 0.9 ≤ fare < ∞ OR NOT sex AND

passenger-class = 2 OR 0.4 ≤ age < 0.5 OR 0.6 ≤ age < 0.7 OR siblings-or-
spouces-aboard = 0 OR 0.1 ≤ fare < 0.2 OR 0.5 ≤ fare < 0.6 OR embarked = C
AND

-∞ ≤ age < 0.1 OR 0.1 ≤ age < 0.2 OR 0.7 ≤ age < 0.8 OR siblings-or-spouces-
aboard = 1 OR parents-or-childred-aboard = 1 OR embarked = C OR NOT
passenger-class = 3 AND

-∞ ≤ age < 0.1 OR 0.2 ≤ age < 0.3 OR 0.3 ≤ age < 0.4 OR parents-or-childred-
aboard = 0 OR NOT passenger-class = 3 OR NOT siblings-or-spouces-aboard =
0 AND

NOT passenger-class = 2 OR NOT 0.7 ≤ age < 0.8

MAGIC:

-∞ ≤ length < 0.1 OR -∞ ≤ size < 0.1 OR 0.8 ≤ conc < 0.9 OR -∞ ≤ alpha <
0.1 OR 0.1 ≤ alpha < 0.2 OR 0.2 ≤ dist < 0.3

Tom’s HW:

0.4 ≤ x10 < 0.5 OR 0.1 ≤ x11 < 0.2 OR 0.4 ≤ x11 < 0.5 OR 0.4 ≤ x12 < 0.5
OR 0.3 ≤ x13 < 0.4 OR 0.6 ≤ x13 < 0.7 OR 0.3 ≤ x15 < 0.4 OR 0.6 ≤ x15 <
0.7 OR 0.4 ≤ x16 < 0.5 OR 0.1 ≤ x57 < 0.2 OR 0.5 ≤ x59 < 0.6 OR 0.3 ≤ x60
< 0.4 OR 0.2 ≤ x62 < 0.3 OR 0.2 ≤ x73 < 0.3 OR 0.1 ≤ x74 < 0.2 OR NOT

164

-∞ ≤ x74 < 0.1 OR NOT -∞ ≤ x96 < 0.1 AND

0.4 ≤ x9 < 0.5 OR 0.8 ≤ x9 < 0.9 OR 0.2 ≤ x12 < 0.3 OR 0.3 ≤ x12 <

0.4 OR 0.3 ≤ x15 < 0.4 OR 0.6 ≤ x15 < 0.7 OR 0.1 ≤ x60 < 0.2 OR 0.1 ≤ x61
< 0.2 OR 0.6 ≤ x78 < 0.7 OR NOT -∞ ≤ x11 < 0.1 OR NOT -∞ ≤ x13 < 0.1
OR NOT -∞ ≤ x46 < 0.1 OR NOT -∞ ≤ x64 < 0.1 OR NOT -∞ ≤ x72 < 0.1
OR NOT -∞ ≤ x77 < 0.1 AND

-∞ ≤ x50 < 0.1 OR 0.1 ≤ x57 < 0.2 AND

-∞ ≤ x49 < 0.1 OR NOT -∞ ≤ x17 < 0.1 AND

0.3 ≤ x14 < 0.4 OR 0.6 ≤ x74 < 0.7 OR 0.9 ≤ x79 < ∞ OR NOT -∞ ≤
x9 < 0.1 OR NOT -∞ ≤ x15 < 0.1 OR NOT -∞ ≤ x73 < 0.1 OR NOT -∞ ≤
x80 < 0.1

Credit:

Repayment-status-in-September = 2 OR Repayment-status-in-September = 3 OR
Repayment-status-in-August = 3OR Repayment-status-in-May = 3OR Repayment-
status-in-May = 5 OR Repayment-status-in-April = 3 AND

0.4 ≤ Age < 0.5 OR Repayment-status-in-September = 1 OR Repayment-status-
in-August = 0 OR Repayment-status-in-July = 2 OR Repayment-status-in-May =
2 OR Repayment-status-in-April = 7 OR 0.3 ≤ Amount-of-bill-statement-in-April
< 0.4 OR NOT Repayment-status-in-May = -1 OR NOT -∞ ≤ Amount-of-bill-
statement-in-May < 0.1 AND

Gender OR -∞ ≤ Age < 0.1 OR 0.3 ≤ Age < 0.4 OR Repayment-status-in-
September = 1 OR 0.1 ≤ Amount-of-bill-statement-in-August < 0.2 OR NOT
Education = 3 OR NOT 0.2 ≤ Amount-of-bill-statement-in-September < 0.3

Adult:

165

education = Doctorate OR education = Prof-school OR 0.1 ≤ capital-gain < 0.2
OR 0.2 ≤ capital-gain < 0.3 OR 0.9 ≤ capital-gain < ∞ OR 0.4 ≤ capital-loss <
0.5 OR 0.5 ≤ capital-loss < 0.6 AND

relationship = Husband OR relationship = Wife OR 0.5 ≤ capital-loss < 0.6
OR 0.6 ≤ capital-loss < 0.7 OR 0.8 ≤ capital-loss < 0.9 OR NOT -∞ ≤ capital-
gain < 0.1 AND

0.1 ≤ age < 0.2 OR 0.7 ≤ age < 0.8 OR workclass = State-gov OR education =
Bachelors OR marital-status = Separated OR occupation = Exec-managerial OR
occupation = Farming-fishing OR occupation = Prof-specialty OR occupation =
Protective-serv OR occupation = Tech-support OR relationship = Unmarried OR
0.4 ≤ capital-loss < 0.5 OR 0.6 ≤ capital-loss < 0.7 OR 0.2 ≤ hours-per-week <
0.3 OR 0.4 ≤ hours-per-week < 0.5 OR 0.7 ≤ hours-per-week < 0.8 OR 0.9 ≤
hours-per-week < ∞ OR NOT -∞ ≤ capital-gain < 0.1

Bank Marketing:

0.7 ≤ age < 0.8 OR 0.2 ≤ duration < 0.3 OR 0.3 ≤ duration < 0.4 OR 0.4 ≤
duration < 0.5 OR 0.5 ≤ duration < 0.6 OR poutcome = success AND

housing OR 0.8 ≤ age < 0.9 OR job = admin. OR job = management OR
job = self-employed OR job = services OR job = unemployed OR 0.2 ≤ duration
< 0.3 OR 0.1 ≤ campaign < 0.2 OR poutcome = success AND

job = services OR 0.2 ≤ balance < 0.3 OR contact = cellular OR 0.1 ≤ du-
ration < 0.2 OR 0.2 ≤ duration < 0.3 OR 0.2 ≤ pdays < 0.3 OR poutcome =
unknown OR NOT -∞ ≤ balance < 0.1 OR NOT -∞ ≤ previous < 0.1 AND

0.2 ≤ age < 0.3 OR 0.3 ≤ age < 0.4 OR 0.8 ≤ age < 0.9 OR job = man-
agement OR job = student OR job = unemployed OR education = secondary OR
0.1 ≤ balance < 0.2 OR 0.1 ≤ duration < 0.2 OR -∞ ≤ pdays < 0.1 OR 0.2 ≤

166

pdays < 0.3 OR poutcome = unknown

Connect-4:

b2 = 1 OR c2 = 1 OR d2 = 1 OR d4 = 1 OR d5 = 0 OR e2 = 1 OR f3 = 0 OR
NOT d1 = 0 AND

b2 = 1 OR b3 = 1 OR b4 = 1 OR d4 = 1 OR f2 = 1 OR NOT d3 = 0
OR NOT f3 = 2 AND

c1 = 2 OR c2 = 2 OR c3 = 1 OR c3 = 2 OR c4 = 1 OR c6 = 0 OR d2 = 1 OR
d4 = 1 OR e2 = 1 OR e3 = 1 OR f4 = 1 OR NOT a3 = 2 OR NOT b6 = 2 AND

a1 = 0 OR a2 = 0 OR a6 = 0 OR b2 = 1 OR b4 = 1 OR b5 = 0 OR c2
= 1 OR c4 = 1 OR c5 = 0 OR d1 = 1 OR d2 = 1 OR e2 = 1 OR g1 = 0 OR g2
= 0 OR NOT d5 = 2 OR NOT d6 = 2 AND

b2 = 1 OR b4 = 1 OR c3 = 1 OR d3 = 1 OR e2 = 1 OR f2 = 1 OR f3
= 1 OR g3 = 0 OR g5 = 0 OR NOT c2 = 0 OR NOT c4 = 2 OR NOT d2 = 2

Weather AUS:

0.7 ≤ Rainfall < 0.8 OR 0.8 ≤ Humidity3pm < 0.9 OR 0.9 ≤ Humidity3pm < ∞
AND

RainToday OR 0.5 ≤WindGustSpeed < 0.6 OR 0.7 ≤ Humidity9am < 0.8 OR 0.9
≤ Humidity3pm <∞ OR 0.4 ≤ Pressure3pm < 0.5 OR NOT 0.9 ≤ Humidity9am
< ∞ AND

0.1 ≤ MinTemp < 0.2 OR 0.8 ≤ MinTemp < 0.9 OR 0.9 ≤ WindSpeed9am
< ∞ OR 0.9 ≤ Humidity9am < ∞ OR 0.8 ≤ Humidity3pm < 0.9 OR 0.9 ≤
Humidity3pm <∞ OR 0.5 ≤ Temp3pm < 0.6 OR NOT 0.7 ≤ Rainfall < 0.8AND

167

WindGustDir = NNW OR WindDir3pm = W OR NOT 0.8 ≤ Temp3pm <

0.9 AND

WindGustDir = NNW OR WindGustDir = NW OR 0.1 ≤ Pressure9am < 0.2 OR
NOT 0.7 ≤ Temp3pm < 0.8

Vote:

NOT physician-fee-freeze AND

NOT adoption-of-the-budget-resolution OR NOT anti-satellite-test-ban OR NOT
synfuels-corporation-cutback AND

adoption-of-the-budget-resolution OR el-salvador-aid OR NOT duty-free-exports
AND

mx-missile OR NOT adoption-of-the-budget-resolution OR NOT el-salvador-
aid OR NOT anti-satellite-test-ban AND

adoption-of-the-budget-resolution OR mx-missile OR NOT synfuels-corporation-
cutback OR NOT education-spending

Skin Seg:

0.2 ≤ Red < 0.3 OR 0.3 ≤ Red < 0.4 OR 0.4 ≤ Red < 0.5 OR 0.9 ≤ Red < ∞
OR 0.9 ≤ Green < ∞ OR 0.4 ≤ Blue < 0.5 OR NOT 0.9 ≤ Blue < ∞ AND

0.2 ≤ Red < 0.3 OR 0.7 ≤ Red < 0.8 OR 0.8 ≤ Red < 0.9 OR 0.9 ≤ Red
< ∞ OR NOT 0.8 ≤ Blue < 0.9 AND

0.7 ≤ Red < 0.8 OR 0.8 ≤ Red < 0.9 OR 0.9 ≤ Red < ∞ OR -∞ ≤ Green
< 0.1 OR NOT 0.7 ≤ Blue < 0.8

168

BNG(labor):

0.5 ≤ wage-increase-first-year < 0.6 OR pension = empl-contr OR contribution-to-
dental-plan = full AND

0.6 ≤ wage-increase-first-year < 0.7 OR 0.7 ≤ wage-increase-second-year < 0.8 OR
0.5 ≤ shift-differential < 0.6 OR NOT longterm-disability-assistance AND

0.2 ≤ wage-increase-first-year < 0.3 OR 0.3 ≤ wage-increase-first-year < 0.4 OR 0.4
≤ wage-increase-first-year < 0.5 OR 0.5 ≤ wage-increase-first-year < 0.6 OR 0.6
≤ wage-increase-first-year < 0.7 OR 0.7 ≤ wage-increase-first-year < 0.8 OR 0.6
≤ wage-increase-second-year < 0.7 OR cost-of-living-adjustment = tcf OR 0.3 ≤
working-hours < 0.4 OR 0.4 ≤ working-hours < 0.5 OR 0.5 ≤ working-hours < 0.6
OR pension = ret-allw OR 0.7 ≤ standby-pay < 0.8OR contribution-to-dental-plan
= full OR contribution-to-health-plan = half OR NOT education-allowance AND

0.5 ≤ shift-differential < 0.6 OR contribution-to-dental-plan = full OR contribution-
to-dental-plan = half OR contribution-to-health-plan = half OR contribution-to-
health-plan = none AND

0.3 ≤ wage-increase-first-year < 0.4 OR 0.6 ≤ wage-increase-first-year < 0.7 OR
0.7 ≤ wage-increase-second-year < 0.8 OR 0.4 ≤ working-hours < 0.5 OR pension
= empl-contr OR pension = ret-allw OR 0.9 ≤ statutory-holidays < inf

BNG(credit-g):

foreign-worker OR checking-status = ’no checking’ OR checking-status = >=200
OR -∞ ≤ duration < 0.1 OR 0.1 ≤ duration < 0.2 OR credit-history = ’criti-
cal/other existing credit’ OR purpose = ’used car’ OR savings-status = ’no known
savings’ OR savings-status = >=1000 OR other-parties = guarantor AND

foreign-worker OR checking-status = ’no checking’ OR checking-status = >=200
OR credit-history = ’delayed previously’ OR purpose = ’used car’ OR purpose

169

= radio/tv OR other-parties = guarantor OR 0.4 ≤ age < 0.5 OR NOT other-
payment-plans = bank AND

checking-status = ’no checking’ OR credit-history = ’critical/other existing credit’
OR purpose = ’used car’ OR purpose = radio/tv OR purpose = retraining OR
employment = 4≤X<7 OR property-magnitude = ’real estate’ OR NOT checking-
status = <0

170

Appendix B

Fairness Verification with Feature
Correlation

In this chapter, we discuss the extended experimental results as a continuation
of Chapter 6.

B.1 Extended Experimental Results
Each experiment is performed on Intel Xeon E7 − 8857 v2 CPUs with 16GB

memory, 64bit Linux distribution based on Debian OS and clock speed 3 GHz.

B.1.1 Accuracy Comparison Among Different Verifiers

We have considered a synthetic problem for comparing accuracy among different
verifiers. For Example 5.0.1, we consider ‘age ≥ 40’ as a Bernoulli random variable
with probability 0.5. For ‘income’ feature (I), we consider two Gaussian distributions
Pr[I|age ≥ 40] ∼ N (0.6, 0.1) and Pr[I|age < 40] ∼ N (0.4, 0.1) separated by two age
groups. Moreover, for ‘fitness’ feature (F), we consider two Gaussian distributions
Pr[F |age ≥ 40] ∼ N (0.7, 0.1) and Pr[F |age < 40] ∼ N (0.3, 0.1). On this data, the
trained LR and SVM classifier has decision boundary as 7.26I+7.4F −1.34A ≥ 6.62
and 9.37I + 9.75F − 0.34A ≥ 9.4, respectively.

In Figure B.1a we show the Bayesian Network on discretized features, in particular
for income and fitness features. In Figure B.1b and Figure B.1c, we show PPVs of
logistic regression classifier computed by different verifiers, where FVGM outputs
closest to exactly computed values, in comparison with Justicia. In Figure B.1d
and Figure B.1e, we show the effect of sample size on FVGM in measuring fairness
metrics: disparate impact and statistical parity, where with increasing sample size,

171

1

2

3

4

5

67

12

9

10

11

13

8

1: 0.12 income < 0.24
2: 0.24 income < 0.37
3: 0.37 income < 0.49
4: 0.49 income < 0.62
5: 0.62 income < 0.74
6: 0.74 income <= 0.87
7: age 40
8: -0.01 health < 0.15
9: 0.15 health < 0.32
10: 0.32 health < 0.48
11: 0.48 health < 0.65
12: 0.65 health < 0.81
13: 0.81 health <= 0.98

(a)

Exa
ct

FVGM

Ju
sti

cia

Verifier

0.0

0.1

0.2

0.3

Pr
[Y

=
1|

 a
ge

40

]

LR

(b)

Exa
ct

FVGM

Ju
sti

cia

Verifier

0.0

0.2

0.4

0.6

0.8

Pr
[Y

=
1|

 a
ge

 <
40

]

LR

(c)

10
1

10
2

10
3

Sample size

0.1
0.2
0.3
0.4
0.5
0.6
0.7

D
is

pa
ra

te
 im

pa
ct

LR
Verifier
FVGM
Exact

(d)

10
1

10
2

10
3

Sample size

0.3

0.4

0.5

0.6

0.7

0.8

S
ta

tis
tic

al
 p

ar
ity

LR

Verifier
FVGM
Exact

(e)

Figure B.1: Measuring accuracy of different fairness verifiers for Example 5.0.1 on
logistic regression classifier.

172

Exa
ct

FVGM

Ju
sti

cia

Verifier

0.0

0.1

0.2

0.3

0.4

Pr
[Y

=
1|

 a
ge

40

]

SVM

Exa
ct

FVGM

Ju
sti

cia

Verifier

0.0

0.2

0.4

0.6

0.8

Pr
[Y

=
1|

 a
ge

 <
40

]

SVM

10
1

10
2

10
3

Sample size

0.2
0.3
0.4
0.5
0.6
0.7

D
is

pa
ra

te
 im

pa
ct

SVM
Verifier
FVGM
Exact

10
1

10
2

10
3

Sample size

0.2

0.3

0.4

0.5

0.6

S
ta

tis
tic

al
 p

ar
ity

SVM

Verifier
FVGM
Exact

Figure B.2: Measuring accuracy of different fairness verifiers for Example 5.0.1 on
SVM classifier.

the estimate becomes more accurate. Similar observations are recorded for SVM
classifier in Figure B.2.

B.1.2 Scalability Comparison Among Different Verifiers

In Figure B.3, we present the runtime of different fairness verifiers while varying
the number of features in different datasets. We observe that with an increase of
features, the runtime increases in general.

B.1.3 Verifying Fairness Algorithms on Multiple Fairness
Metrics

We show extended results on verifying fairness attack in Figure B.4 for two fairness
metrics: disparate impact (DI) and statistical parity (SP). We observe that FVGM
can detect poisoning attack for both metrics. In Figure B.5 we show verification
results on compound sensitive groups with respect to multiple fairness metrics. In
this figure, we observe that with an increase in the number of groups, fairness metrics
worsens—disparate impact decreases and other three metrics increases.

173

0.25 0.5 0.75 1.0
fraction of features

100

101

102

103

Ti
m

e
(s

)

Adult, LR

FairSquare
VeriFair
Justicia
FVGM

0.25 0.5 0.75 1.0
fraction of features

101

102

103

Ti
m

e
(s

)

Adult, SVM

FairSquare
VeriFair
Justicia
FVGM

0.25 0.5 0.75 1.0
fraction of features

100

101

102

103

Ti
m

e
(s

)

Compas, LR

FairSquare
VeriFair
Justicia
FVGM

0.25 0.5 0.75 1.0
fraction of features

101

102

103

Ti
m

e
(s

)

Compas, SVM

FairSquare
VeriFair
Justicia
FVGM

0.25 0.5 0.75 1.0
fraction of features

100

101

102

103

Ti
m

e
(s

)

German, LR

FairSquare
VeriFair
Justicia
FVGM

0.25 0.5 0.75 1.0
fraction of features

100

101

102

103

Ti
m

e
(s

)

German, SVM

FairSquare
VeriFair
Justicia
FVGM

0.25 0.5 0.75 1.0
fraction of features

100

101

102

103

Ti
m

e
(s

)

Titanic, LR

FairSquare
VeriFair
Justicia
FVGM

0.25 0.5 0.75 1.0
fraction of features

100

101

102

103

Ti
m

e
(s

)

Titanic, SVM

FairSquare
VeriFair
Justicia
FVGM

Figure B.3: Effect of number of features on the runtime of different datasets for LR
and SVM classifiers.

174

1 5 10 20 40 80 120160
Poisoned samples

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Di
sp

ar
at

e
im

pa
ct

1 5 10 20 40 80 120160
Poisoned samples

0.00
0.02
0.04
0.06
0.08
0.10

St
at

ist
ica

l p
ar

ity

Figure B.4: Verifying fairness poisoning attack using FVGM. The red line denotes
safety margin, which being exceeded denotes system-vulnerability by the attack
algorithm. As the number of poisoned samples increase, disparate impact (DI)
decreases and statistical parity (SP) increases.

B.1.4 Performance Analysis of Bayesian Network

In Figure B.6, we analyze the performance of encoding Bayesian Networks of
differing complexity. We define the complexity of the network as |V |

|X∪A| , which is the
ratio between the number of features appearing in the network and total features.
In this figure, as the ratio increases, both computation time of FVGM and learning
time of Bayesian Network increase.

175

sex
(2)

sex,
age
(8)

race,
sex
(10)

race,
sex,
age
(40)

Protected groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6

D
is

pa
ra

te
 im

pa
ct

Adult

sex
(2)

sex,
age
(8)

race,
sex
(10)

race,
sex,
age
(40)

Protected groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6

S
ta

tis
tic

al
 p

ar
ity

Adult

sex
(2)

sex,
age
(8)

race,
sex
(10)

race,
sex,
age
(40)

Protected groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

E
qu

al
iz

ed
 o

dd
s

Adult

Y=0
Y=1

sex
(2)

sex,
age
(8)

race,
sex
(10)

race,
sex,
age
(40)

Protected groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

P
C

F

Adult

sex
(2)

sex,
race
(4)

age,
sex
(8)

race,
age,
sex
(16)

Protected groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

D
is

pa
ra

te
 im

pa
ct

Compas

sex
(2)

sex,
race
(4)

age,
sex
(8)

race,
age,
sex
(16)

Protected groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

S
ta

tis
tic

al
 p

ar
ity

Compas

sex
(2)

sex,
race
(4)

age,
sex
(8)

race,
age,
sex
(16)

Protected groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6

E
qu

al
iz

ed
 o

dd
s

Compas

Y=0
Y=1

sex
(2)

sex,
race
(4)

age,
sex
(8)

race,
age,
sex
(16)

Protected groups

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

P
C

F

Compas

Figure B.5: Verifying compound sensitive groups with respect to multiple fairness
metrics. In each plot, the X-axis shows sensitive features with the number of
compound groups (within parenthesis) and Y -axis shows computed group and causal
fairness metrics.

176

0 20 40 60 80 100 120 140
Benchmarks solved

100

101

102

103

Ti
m

e
lim

it(
s)

LR
|V|

|X A|
0.25
0.5
0.75
1.0

0 20 40 60 80 100 120 140
Benchmarks solved

100

101

102

BN
 le

ar
ni

ng
 ti

m
e

(s
)

LR

|V|
|X A|
0.25
0.5
0.75
1.0

Figure B.6: Effect of number of variables in the learned Bayesian Network on
computation time of FVGM. In both plots, we vary |V|

|X∪A| , that is the ratio between
the number of variables in the Bayesian Network to the number of features. We
observe that as this ratio increases to 1, both runtime of FVGM (left plot) and
network learning time (right plot) increase.

177

Appendix C

Feature Correlations in SSAT-based
Fairness Verifier

In Chapter 5, Justicia verifies the fairness of CNF classifiers without considering
correlation among features. Now, we address fairness verification of CNF classifiers
with correlated features. In particular, we present the encoding of conditional
probabilities from a Bayesian network into the SSAT formulation in Justicia.

Methodology

For CNF classifiers, SSAT is a natural choice as it computes the probability of
satisfaction of a CNF formula given quantified Boolean variables, where quantifiers
distinguish between (random) non-sensitive variables and (existential or universal)
sensitive variables. Let φ

Ŷ
be a CNF classifier such that a satisfying assignment

of φ
Ŷ
denotes the positive prediction of the classifier Ŷ = 1. We consider another

CNF formula φBN to encode the conditional dependencies among variables in the
Bayesian Network BN, which is given as the input distribution. φBN contains
auxiliary variables to encode the conditional dependencies, which we discuss shortly.
The outline of our methodology is to construct a conjoined CNF formula φ

Ŷ
∧ φBN,

assign appropriate quantifiers to the variables, and solve an SSAT problem on
quantified formula φ

Ŷ
∧ φBN to answer queries such as maxa Pr[Ŷ = 1|A = a] and

mina Pr[Ŷ = 1|A = a]—the maximum and minimum conditional positive prediction
of the classifiers with correlated features, respectively.

Encoding a Bayesian Network as a CNF Formula. Our goal is to encode
the Bayesian network BN = (G, θ) into a CNF formula φBN such that the weighted
model count of φBN exactly computes the joint probability distribution in BN [32].

178

In this context, an SSAT formula trivially does not allow conditional probabilities of
randomized quantified variables. Hence, φBN contains additional auxiliary variables
to capture the conditional probabilities, as discussed next.

Let G = (V,E) where V ⊆ X ∪A, E ⊆ V ×V, and each variable Vi ∈ V is
Boolean. For each network variable Vi ∈ V, we define a Boolean indicator variable
λVi

such that Pr[λVi
] , Pr[Vi]. We add following constraint in φBN to establish the

relation between λVi
and Vi.

λVi
↔ Vi, (C.1)

Intuitively, both λVi
and Vi are either true or false. This constraint can be trivially

translated to clauses in CNF using the equivalence rule A↔ B ≡ (¬A∨B)∧(A∨¬B)
for Boolean variables A,B.

We now present the encoding of conditional probabilities induced by parameters
in the network θ. Let Vi ∈ V be a vertex in G where Pa(Vi) 6= ∅ be Vi’s parents
and |Pa(Vi)| = k. Additionally, let v and u , [u1, .., uk] be an assignment of Vi
and Pa(Vi), respectively. To encode Pr[Vi = v|Pa(Vi) = u], we introduce auxiliary
variable λv,u and add following constraints in φBN.

λv,u ∧
k∧
j=1

λuj
→ λv (C.2)

¬λv,u ∧
k∧
j=1

λuj
→ ¬λv (C.3)

where λv ≡ λVi
. Moreover, λuj

is the indicator variable corresponding to
the jth parent in Pa(Vi). In the above two constraints, for a fixed assignment
u of parents Pa(Vi), both λv and λv,u are either true or false. Hence, these two
constraints encode the conditional probability of Vi = v given Pa(Vi) = u using
Pr[λv,u] = Pr[Vi = v|Pa(Vi) = u]. Both constraints can be translated to CNF clauses
trivially. For example, Eq. C.2 is translated as ¬λv,u ∨

∨k
j=1 ¬λuj

∨ λv. We next
analyze the complexity of φBN in terms of the number of variables and clauses.

Lemma 20. For a Bayesian network BN = (G, θ) defined over n Boolean variables
and C(G) network complexity, the encoded CNF formula φBN has n+C(G) variables
and 2(n+ C(G)) clauses.

179

Proof. Since the DAG in the Bayesian network has n vertices, we consider n indica-
tor variables. Moreover, for encoding conditional probabilities, we consider C(G)
auxiliary variables where C(G) denotes the the number of independent parameters
in the network (ref. Chapter 2.4). Hence, total variables in φBN is n+ C(G).

According to Eq. (C.1), (C.2), (C.3), there are 2(n+ C(G)) clauses in φBN.

Quantifiers in φ
Ŷ
∧ φBN. We now discuss the quantifiers in φ

Ŷ
∧ φBN, the SSAT

solution of which constitutes the maximum (minimum) probability of positive
prediction of a CNF classifier. φ

Ŷ
∧ φBN contains four categories of variables: (i)

sensitive variables A, (ii) non-sensitive variables X, (iii) indicator variables λVi
, and

(iv) auxiliary variables λv,u. Among them, (iii) and (iv) are associated with φBN and
the rest for φ

Ŷ
. For computing the maximum probability of positive prediction of the

classifier, we construct an exists-random-exists (ERE) SSAT formula with following
quantifiers: we set sensitive features A with existential quantifiers in the beginning
of the prefix of the SSAT formula followed by λVi

, λv,u, and Xj ∈ X \ V with
randomized quantifiers. The remaining variables Xi ∈ V are existentially quantified
as their assignment is fixed by indicator variables λVi

. In contrast, for computing
the minimum probability of positive prediction of the classifier, we consider an
universal-random-exists (URE) SSAT formula where we set sensitive features A as
universal quantifiers with all other quantifiers remaining same.

180

Appendix D

Fairness Influence Functions

D.1 Proofs of Properties and Implications of FIF
Theorem 14. Let f(M,D) be the bias/unfairness of the classifierM on dataset
D according to linear group fairness metrics such as statistical parity. Let wS be
the FIF of a subset of features ZS as defined in Eq. (7.1).

(a) The decomposability property of FIF states that the sum of FIFs of all subset
of features is equal to the bias of the classifier.∑

S⊆[m]
wS = f(M,D) (D.1)

(b) The symmetry property states that two features Zi and Zj are equivalent based
on FIF if the sum of corresponding individual influences and the intersectional
influences with all other features are the same. Mathematically,∑

S′′⊆[m]\{i,j}
wS′′∪{i} =

∑
S′′⊆[m]\{i,j}

wS′′∪{j} (D.2)

if∑S′⊆S∪{i}wS′ = ∑
S′⊆S∪{j}wS′ for every non-empty subset S of [m] containing

neither i nor j.

(c) The null property of FIF states that feature Xi is a dummy or neutral feature
if sum of its individual influence and the intersectional influences with all other
features is zero. Mathematically,∑

S′′⊆[m]\{i}
wS′′∪{i} = 0 (D.3)

if ∑S′⊆S∪{i}wS′ = ∑
S′⊆S wS′ for every non-empty subset S of [m] that does

not contain i.

181

Proof. (a) The decomposability property of FIF is based on GSA, where the total
variance is decomposed to the variances of individual and intersectional inputs.

∑
S⊆[m]

wS =
∑

S⊆[m]

Vamax,S

Pr[Ŷ = 0 | A = amax]
− Vamin,S

Pr[Ŷ = 0 | A = amin]

=
∑

S⊆[m] Vamax,S

Pr[Ŷ = 0 | A = amax]
−

∑
S⊆[m] Vamin,S

Pr[Ŷ = 0 | A = amin]

= Vamax

Pr[Ŷ = 0 | A = amax]
− Vamin

Pr[Ŷ = 0 | A = amin]

= Var[Ŷ = 1 | A = amax]
Pr[Ŷ = 0 | A = amax]

− Var[Ŷ = 1 | A = amin]
Pr[Ŷ = 0 | A = amin]

= fSP(M,D)

Thus, applying Lemma 13, we prove the decomposability property of FIF for
statistical parity.

(c) We observe that

∑
S′⊆S∪{i}

wS′ =
∑

S′⊆S
wS′ +

∑
S′′⊆S

wS′′∪{i}. (D.4)

This means that we can decompose the sum of FIFs of all the subsets of S ∪ {i}
into two non-overlapping sums: the subsets that include i and the subsets that do
not include.

Since we assume that for i, ∑S′⊆S∪{i}wS′ = ∑
S′⊆S wS′ holds true, it implies

∑
S′′⊆S

wS′′∪{i} = 0.

Now, considering S = [m] \ {i}, i.e. the set of all features except i, concludes the
proof.

(b) Proof of the symmetry property follows similar decomposition of the sum of
FIFs as Equation (D.4).

Proposition 15. When wS < 0, i.e. features ZS decrease bias, the decomposed
variance of CPPs w.r.t. ZS follows Vamax,S < Vamin,S.

182

Proof. When wS < 0,

Vamax,S

Pr[Ŷ = 0 | A = amax]
− Vamin,S

Pr[Ŷ = 0 | A = amin]
< 0

=⇒ Vamax,S

Pr[Ŷ = 0 | A = amax]
<

Vamin,S

Pr[Ŷ = 0 | A = amin]

=⇒ Vamax,S

Vamin,S
<

Pr[Ŷ = 0 | A = amax]
Pr[Ŷ = 0 | A = amin]

≤ 1

=⇒ Vamax,S

Vamin,S
< 1

=⇒ Vamax,S < Vamin,S

Proposition 16. If the decomposed variance of CPPs w.r.t. ZS satisfies Vamax,S >

Vamin,S, the corresponding FIF wS > 0, i.e. features ZS increase bias.

Proof. Since Vamax,S > Vamin,S, we obtain Vamax,S
Vamin,S

> 1. Since amax and amin are the
most and least favored groups respectively, the probability of yielding a positive
prediction is greater or equal for amax than amin. Thus, Pr[Ŷ = 0 | A = amax] ≤
Pr[Ŷ = 0 | A = amin], which implies that Pr[Ŷ=0|A=amax]

Pr[Ŷ=0|A=amin]
≤ 1.

Combining both the observations, we obtain

Vamax,S

Vamin,S
>

Pr[Ŷ = 0 | A = amax]
Pr[Ŷ = 0 | A = amin]

=⇒ Vamax,S

Pr[Ŷ = 0 | A = amax]
>

Vamin,S

Pr[Ŷ = 0 | A = amin]

=⇒ Vamax,S

Pr[Ŷ = 0 | A = amax]
− Vamin,S

Pr[Ŷ = 0 | A = amin]
> 0

=⇒ wS > 0.

D.2 A Smoothing Operator: Cubic Splines
In the LocalRegression module of FairXplainer (Line 6–13, Algorithm 6), we

use a smoothing operator Smooth (Line 10). In our experiments, we use cubic

183

splines as the smoothing operator. Here, we elucidate the technical details of cubic
splines.

In interpolation problems, a B-spline of order n is traditionally used to smoothen
the intersection of piecewise interpolators [165]. A B-spline of degree n is a piecewise
polynomial of degree n − 1 defined over a variable Z. Each piece-wise term is
computed on local points and is aggregated as a global curve smoothly fitting the
data. The values of Z where the polynomial pieces meet together are called knots,
and are denoted by {. . . , t0, t1, t2, . . . }.

Let Br,n(Z) denote the basis function for a B-spline of order n, and r is the index
of the knot vector. According to Carl de Boor [25], Br,1(Z), for n = 1, is defined as

Br,1(Z) =

0 if Z < tr or Z ≥ tr+1,

1 otherwise

This definition satisfies ∑iBr,1(Z) = 1. The higher order basis functions are
defined recursively as

Br,n+1(Z) = pr,n(Z)Br,n(Z) + (1− pr+1,n(Z))Br+1,n(Z),

where

pr,n(Z) =

Z−tr

tr+n−tr if tr+n 6= tr,

0 otherwise.

In this chapter, we consider cubic splines with the basis function Br,4(Z) that
constitutes a B-spline of degree 3. This polynomial has C2 continuity, i.e. for each
piecewise term, derivatives up to the second order are zero at the endpoints of each
interval in the knot vector. We estimate component functions ga,S’s with the basis
function Br,4(Z) of cubic splines [102], as shown in Equation (D.5).

ga,{i}(Z{i}) ≈
τ+1∑
r=−1

αirBr,n(Z{i})

ga,{i,j}(Z{i,j}) ≈
τ+1∑
p=−1

τ+1∑
q=−1

βijpqBp(Z{i})Bq(Z{j})

ga,{i,j,k}(Z{i,j,k}) ≈
τ+1∑
p=−1

τ+1∑
q=−1

τ+1∑
r=−1

γijkpqrBp(Z{i})Bq(Z{j})Br,n(Z{j})

(D.5)

184

Here, τ is the number of knots, also called spline intervals. We learn the
coefficients α, β, γ using the backfitting algorithm (Line 6–13, Algorithm 6).

τ is a hyper-parameter that influences the accuracy of the local regression and
thus, the FIFs. We perform an ablation study to explicate the impact of τ on the
performance of FairXplainer in Appendix D.4.

D.3 Computing FIFs for Equalized Odds and Pre-
dictive Parity

Due to brevity of space, we elaborate definition of statistical parity and corre-
sponding methodology to compute FIFs in the main text. Here, we provide definition
of other group-based fairness metrics [182]: equalized odds and predictive parity.
We also explain the methodology to use FairXplainer in order to compute FIFs
corresponding to these metrics.

Following the classification setting and notations described in Chapter 2, here
we consider a binary classifier trained on dataset D , {(x(i),a(i), y(i))}ni=1 asM :
(X,A)→ Ŷ . Ŷ ∈ {0, 1} and Y ∈ {0, 1} represents the predicted class and the true
class for a data point (X,A) with sensitive features A and non-sensitive features X.

D.3.1 FIFs of Equalized Odds

For equalized odds, we deploy FairXplainer twice, one for computing FIFs on a
subset of data points in the dataset where Y = 1 and another on data points with
Y = 0. Since, the maximum of the sum of FIFs between Y = 1 and Y = 0 is the
equalized odds of the classifier, we finally report FIFs of features corresponding to
the maximum sum of FIFs between Y ∈ {0, 1}.

D.3.2 FIFs of Predictive Parity

To compute FIFs for predictive parity, we condition the dataset by the predicted
class Ŷ and separate into two sub-datasets: Ŷ = 1 and Ŷ = 0. For each sub-dataset,
we deploy FairXplainer by setting the ground-truth class Y as label. This contrasts
the computation for statistical parity and equalized odds, where the predicted class
Ŷ is considered as label. Finally, the maximum of the sum of FIFs between two

185

sub-datasets for Ŷ = 1 and Ŷ = 0 measures the predictive parity. Similar to
equalized odds, FIFs achieving the greatest sum of FIFs for Ŷ ∈ {0, 1} are the
reported FIFs for the predictive parity of the classifier.

D.4 Experimental Evaluations

D.4.1 Experimental Setup

We perform experiments on a Red Hat Enterprise Linux Server release 6.10
(Santiago) that has an E5 − 2690 v3 CPU and 16GB of RAM. With the aim of
computing FIFs for any classifier, we do not adjust the classifier’s hyper-parameters
during training. Instead, we utilize the default hyper-parameters provided by Scikit-
learn [138]. For equalized odds and predictive parity, FairXplainer (similarly SHAP)
is deployed twice. Hence, we double the time limit, 2 ∗ 300 = 600 seconds.

D.4.2 Accuracy: Equalized Odds & Predictive Parity via
FIFs.

The accuracy of approximating equalized odds and predictive parity for FairXplainer
and SHAP is compared in Table D.1. FairXplainer shows lower estimation error
compared to SHAP, especially when λ = 2. SHAP is unable to explain predictive
parity as predictive parity relies on the ground label Y , which is not available for
randomly generated data points by SHAP for estimating local explanations.

D.4.3 Execution Time: Equalized Odds & Predictive Parity
via FIFs

In Figure D.1, we demonstrate the execution time of different methods in
estimating FIFs of equalized odds and predictive parity in cactus plots. FairXplainer
with λ = 1 is more efficient than λ = 2 and solves all 480 fairness instances with at
least one order of magnitude less execution time. Compared to FairXplainer (λ = 1),
SHAP demonstrates less computational efficiency.

186

Ta
bl
e
D
.1
:
M
ed

ia
n
es
tim

at
io
n
er
ro
r
(o
ve
r
5-
fo
ld

cr
os
s
va
lid

at
io
n
an

d
al
lc

om
bi
na

tio
ns

of
se
ns
iti
ve

fe
at
ur
es
)
of

eq
ua

liz
ed

od
ds

(c
ol
um

ns
5
to

7)
an

d
pr
ed

ict
iv
e
pa

rit
y
(c
ol
um

ns
8
an

d
9)

in
te
rm

s
of

es
tim

at
ed

FI
Fs

by
di
ffe

re
nt

m
et
ho

ds
.
Be

st
re
su
lts

(lo
we

st
er
ro
r)

ar
e
in

bo
ld

co
lo
r.

‘—
’d

en
ot
es

tim
eo
ut
.
SH

A
P

ca
nn

ot
es
tim

at
e
FI

Fs
fo
r
pr
ed
ic
tiv

e
pa

rit
y
du

e
to

lim
ite

d
m
et
ho

do
lo
gy
.

D
at
as
et

D
im

en
sio

n
(n
,m

)
M
ax

Se
ns
iti
ve

Fe
at
ur
es
,|

A
|

C
la
ss
ifi
er

Eq
ua

liz
ed

O
dd

s
Pr

ed
ic
tiv

e
Pa

rit
y

SH
A
P

Fa
irX

pl
ai

ne
r

Fa
irX

pl
ai

ne
r

λ
=

1
λ

=
2

λ
=

1
λ

=
2

T
ita

ni
c

(8
34
,1

1)
3

Lo
gi
st
ic

R
eg
re
ss
io
n

1.
69

7
0.

00
0

0.
00

0
0.

25
1

0.
14

8
SV

M
1.

00
0

0.
00

0
0.

00
0

0.
09

2
0.

04
5

N
eu
ra
lN

et
wo

rk
—

0.
00

0
0.

00
0

0.
34

9
0.

17
1

D
ec
isi
on

Tr
ee

0.
07

4
0.

18
5

0.
05

9
0.

09
7

0.
09

7

G
er
m
an

(4
17
,2

3)
2

Lo
gi
st
ic

R
eg
re
ss
io
n

0.
38

2
0.

10
9

0.
00

1
0.

07
5

0.
00

1
SV

M
0.

43
5

0.
08

2
—

0.
06

0
0.

00
1

N
eu
ra
lN

et
wo

rk
—

0.
14

9
0.

00
0

0.
18

4
0.

00
0

D
ec
isi
on

Tr
ee

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

C
O
M
PA

S
(5

77
1,

8)
3

Lo
gi
st
ic

R
eg
re
ss
io
n

0.
38

0
0.

16
7

0.
07

1
0.

20
1

0.
21

4
SV

M
0.

48
1

0.
04

3
0.

02
4

0.
12

4
0.

11
7

N
eu
ra
lN

et
wo

rk
—

0.
14

3
0.

05
5

0.
07

8
0.

12
9

D
ec
isi
on

Tr
ee

0.
07

1
0.

06
9

0.
03

1
0.

34
8

0.
34

0

A
du

lt
(2

60
48
,1

1)
3

Lo
gi
st
ic

R
eg
re
ss
io
n

1.
64

7
0.

18
6

0.
01

3
0.

09
0

0.
00

2
SV

M
0.

70
3

0.
08

1
0.

00
1

0.
10

9
0.

00
2

N
eu
ra
lN

et
wo

rk
—

0.
07

7
0.

00
0

0.
09

1
0.

00
2

D
ec
isi
on

Tr
ee

0.
06

2
0.

26
3

0.
19

0
0.

21
6

0.
20

3

187

0 100 200 300 400 500
Instances Solved

10−1

100

101

102

E
xe

cu
ti

on
T

im
e

(s
)

SHAP FairXplainer (λ = 1) FairXplainer (λ = 2)

(a) Equalized Odds

0 100 200 300 400
Instances Solved

10−1

100

101

102

E
xe

cu
ti

on
T

im
e

(s
)

SHAP FairXplainer (λ = 1) FairXplainer (λ = 2)

(b) Predictive Parity

Figure D.1: Execution time of different methods for estimating FIFs for equalized
odds and predictive parity. FairXplainer with λ = 1 is more efficient than SHAP,
while FairXplainer (λ = 2) requires more computational effort. SHAP cannot explain
predictive parity.

2 4 6 8 10
Spline intervals, τ

0.00

0.02

0.04

0.06

0.08

0.10

E
rr

or
,
|S

P
−

Ŝ
P
|

λ = 1 λ = 2

(a) Adult

2 4 6 8 10
Spline intervals, τ

0.00

0.05

0.10

0.15

0.20

R
M

S
E

λ = 1 λ = 2

(b) Adult

2 4 6 8 10
Spline intervals, τ

100

101

T
im

e
(s

)

λ = 1 λ = 2

(c) Adult

2 4 6 8 10
Spline intervals, τ

0.00

0.02

0.04

0.06

0.08

0.10

E
rr

or
,
|S

P
−

Ŝ
P
|

λ = 1 λ = 2

(d) COMPAS

2 4 6 8 10
Spline intervals, τ

0.00

0.05

0.10

0.15

0.20

R
M

S
E

λ = 1 λ = 2

(e) COMPAS

2 4 6 8 10
Spline intervals, τ

100

101

T
im

e
(s

)

λ = 1 λ = 2

(f) COMPAS

Figure D.2: Effect of spline intervals on the approximation error of statistical parity,
root-mean square error (RMSE), and execution time of FairXplainer.

188

Ricci Titanic COMPAS
Dataset

0.00

0.05

0.10

0.15

0.20

0.25

E
rr

or
,
|S

P
−

Ŝ
P
|

λ = 1 λ = 2 λ = 3

Ricci Titanic COMPAS
Dataset

0.00

0.05

0.10

0.15

0.20

R
M

S
E

λ = 1 λ = 2 λ = 3

Ricci Titanic COMPAS
Dataset

100

101

102

T
im

e
(s

)

λ = 1 λ = 2 λ = 3

Figure D.3: Effect of maximum order λ on the approximation error of statistical
parity, root-mean square error (RMSE) and execution time of FairXplainer.

D.4.4 Ablation Study: Effect of Spline Intervals

To understand the impact of spline intervals τ on FairXplainer, we conduct
an experiment. τ determines the number of local points to include in the cubic-
spline based smoothing, with higher values providing better approximation of the
component functions in the set-additive decomposition of the classifier (ref. Eq. (7.5)).
As shown in Figure D.2, as τ increases, the approximation error of statistical parity
based on FIFs decreases as well as the root mean square error of the set-additive
approximation of the classifier. On the other hand, with higher τ , the execution time
of FairXplainer increases. Therefore, τ exhibits a trade-off between the estimation
accuracy and execution time of FairXplainer.

D.4.5 Ablation Study: Effect of Maximum Order of Inter-
sectionality

Figure D.3 examines the impact of the maximum order of intersectionality (λ)
on FairXplainer in terms of accuracy and execution time on Ricci [121], Titanic,
and COMPAS datasets. As λ increases, we see a decrease in approximation error
for statistical parity based on FIFs, a decrease in the root mean squared error of
the classifier’s set additive decomposition, and an increase in execution time across
different datasets. This means λ provides a trade-off between accuracy and efficiency
in FairXplainer.

189

0.00 0.05 0.10 0.15 0.20
Influence on SP

education-num

age

capital-loss

hours-per-week

sex

capital-gain

race

FIFs (λ > 1)

0.102

0.025

0.012

0.01

0

0

0

0.057

0.206

(a) Individual FIFs

0.000.050.100.150.20
Influence on SP

education-num

sex & capital-gain

age & education-num

sex & education-num

education-num & capital-gain

age

Residual FIFs

0.102

-0.078

0.064

-0.026

0.026

0.025

0.094

0.206

(b) Individual and intersectional FIFs

Figure D.4: FIFs for Adult dataset on explaining statistical parity.

D.4.6 FIF of Different Datasets

We deploy a neural network (3 hidden layers, each with 2 neurons, L2 penalty
regularization term as 10−5, a constant learning rate as 0.001) on different datasets,
namely Adult and Titanic, and demonstrate the corresponding FIFs in Figures D.4
and D.5, respectively. In all the figures, both individual and intersectional FIFs
depict the sources of bias more clearly than individual FIFs alone, as argued in
Chapter 7.4.

In Adult dataset, the classifier predicts whether an individual earns more
than $50k per year or not, where race and sex are sensitive features. We observe
that the trained network is unfair and it demonstrates statistical parity as 0.23.
As we analyze FIFs, education number, age, and capital gain/loss are key features
responsible for the bias.

In Titanic dataset, the neural network predicts whether a person survives the
Titanic shipwreck or not. In this experiment, we consider the sex of a person as a
sensitive feature and observe that the classifier is highly unfair achieving statistical
parity as 0.83. Our FIF analysis reveals high correlation in Titanic, where individual
FIFs are mostly zero while intersectional FIFs achieve high absolute values.

190

0.0 0.2 0.4 0.6 0.8 1.0
Influence on SP

siblings or spouce aboard
parents or childred aboard

age
sex
fare

passenger class 1
passenger class 2
passenger class 3

embarked C
embarked Q
embarked S

FIFs (λ > 1)

0.152
0.059
0.025
0
0
0
0
0
0
0
0

0.533

0.769

(a) Individual FIFs

−3 −2 −1 0 1
Influence on SP

sex & embarked Q

sex & fare

sex & passenger class 2

sex & passenger class 3

age & siblings or spouce aboard

age & passenger class 3

Residual FIFs

-0.935

-0.752

-0.437

-0.304

-0.276

0.261

3.212

0.769

(b) Individual and intersectional FIFs

Figure D.5: FIFs for Titanic dataset on explaining statistical parity.

191

	Acknowledgments
	Contents
	Abstract
	List of Publications
	List of Algorithms
	List of Figures
	List of Tables
	Prologue
	Introduction
	Interpretable Rule-based Machine Learning
	Scalability via Incremental Learning
	Expressiveness via Logical Relaxation

	Fairness in Machine Learning
	Probabilistic Fairness Verification
	Interpreting Fairness: Identifying Sources of Bias

	Thesis Outline

	Preliminaries
	Formal Methods
	Propositional Satisfiability (SAT)
	Relaxation of Logical Formulas
	Inner Product
	Maximum Satisfiability (MaxSAT)
	Stochastic Boolean Satisfiability (SSAT)
	Stochastic Subset Sum Problem

	Interpretable Machine Learning
	Rule-based Classification
	Decision Lists
	Decision sets

	Fairness in Machine Learning
	Dataset and Distribution
	Fairness Metrics

	Bayesian Network
	Global Sensitivity Analysis (GSA): Variance Decomposition

	Interpretable Rule-based Machine Learning
	Scalability via Incremental Learning
	Related Work
	Problem Formulation
	Interpretable Classification Rule Learning via MaxSAT
	Description of Variables
	MaxSAT Encoding
	Learning with Non-binary Features
	Flexible Interpretability Objectives

	Incremental Learning of Interpretable Classification Rules
	Mini-batch Learning
	Iterative Learning

	Learning Other Interpretable Classifiers
	Learning DNF classifiers
	Learning Decision Lists
	Learning Decision Sets

	Empirical Performance Analysis
	Experimental Setup
	Experimental Results

	Chapter Summary

	Expressiveness via Logical Relaxation
	Problem Formulation
	Classification Rules in Relaxed Logical Form
	Description of Variables
	Construction of the ILP Query
	Incremental Mini-batch Learning
	Learning with Non-binary Features
	Learning Rules in Other Logical Forms

	Empirical Performance Analysis
	Experimental Setup
	Experimental Results

	Chapter Summary

	 Fairness in Machine Learning
	Fairness Verification using SSAT
	An SSAT-based Fairness Verifier
	Enumeration Approach using RE-SSAT encoding
	Inference Approach using ER-SSAT Encoding
	Practical Settings

	Empirical Performance Analysis
	Experimental Setup
	Experimental Analysis

	Chapter Summary

	Handling Feature Correlations in Fairness Verification
	Fairness Verification with Graphical Models
	Stochastic Subset Sum Problem
	A Dynamic Programming Solution
	Stochastic Subset Sum Problem with Correlated Variables
	Fairness Verification using Probability of Positive Prediction
	Extension to Practical Settings

	Empirical Performance Analysis
	Scalability Analysis
	Accuracy Analysis

	Chapter Summary

	 Epilogue
	Interpreting Fairness: Identifying Sources of Bias
	Related Work
	Fairness Influence Functions: Formulation and Properties
	Fairness Metrics as the Variance of Prediction
	Formulation of FIF

	 An Algorithm to Estimate Fairness Influence Functions
	Empirical Performance Analysis
	Performance and Functionality in Estimating FIFs
	Explainability and Applicability of FIFs

	Chapter Summary

	Conclusion And Future Work

	Bibliography
	Interpretable Classification Rules
	Performance Comparison: Incremental vs. Non-incremental Encoding
	Representative Interpretable Classifiers

	Fairness Verification with Feature Correlation
	Extended Experimental Results
	Accuracy Comparison Among Different Verifiers
	Scalability Comparison Among Different Verifiers
	Verifying Fairness Algorithms on Multiple Fairness Metrics
	Performance Analysis of Bayesian Network

	Feature Correlations in SSAT-based Fairness Verifier
	Fairness Influence Functions
	Proofs of Properties and Implications of FIF
	A Smoothing Operator: Cubic Splines
	Computing FIFs for Equalized Odds and Predictive Parity
	FIFs of Equalized Odds
	FIFs of Predictive Parity

	Experimental Evaluations
	Experimental Setup
	Accuracy: Equalized Odds & Predictive Parity via FIFs.
	Execution Time: Equalized Odds & Predictive Parity via FIFs
	Ablation Study: Effect of Spline Intervals
	Ablation Study: Effect of Maximum Order of Intersectionality
	FIF of Different Datasets

